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Energy and Momentum of the Metric Field

Overview

In General Relativity Theory (GRT), the gravitational potential
of Newton’s theory is replaced by the metric field of four-dimen-
sional spacetime, and the gravitational force is replaced by the
Christoffel symbols (which in essence are consisting of the metric
field’s derivatives with respect to the four spacetime coordinates).
Accordingly the metric field can — like the gravitational field in
Newton’s theory — store energy and momentum, and exchange it
with other fields. The energy-stress-matrix (which is no tensor!)
of the metric field, and the “dynamic” energy-stress-tensors of
the other fields, which are contained within spacetime, will be
evaluated. Concluding, an alleged incompatibility between GRT
and the conservation of energy and momentum is discussed.
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1. Notation

Starting point of our evaluation is Einstein’s field equation

Rµν −
R

2 gµν + Λ gµν = −8πG
c4 Tµν , (1)

in which (Rµν) is the Ricci-tensor, R ≡ gµνRµν is the Ricci-scalar,
(gµν) is the metric tensor, Λ is the cosmological constant, G is the
gravitation constant, and c is the speed of light. (Tµν) is the energy-
density-momentumdensity-tensor of the fields, which are contained
within spacetime (i. e. all fields with exception of the metric field
itself). For this tensor, the shorter names energy-momentum-tensor
or energy-tensor or energy-stress-tensor are conventional. We will
simply call it ES-tensor in most cases.
With one exception, we use the same letters for tensors and for

their contractions:

gµνgρσRρµσν = gµνRσµσν = gµνRµν = Rνν = R (2)

If we want to emphasize, that we are talking about the complete
tensor but not just about one of it’s components, we write (Rµν).
But in a simplifying notation, we often will use Rµν as indication
of the complete tensor. Then it is visible only from the context,
whether the tensor or just one of it’s components is meant. In the
case of vectors, we use the notation A ≡ (Aν).
The one exception is the metric tensor. For it’s contraction

gµνgµν = gνν = 4 (3)

we will not use the letter g. Instead

g ≡ det(gαβ) =
∣∣∣(gαβ)

∣∣∣ (4)
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is defined to be the metric tensor’s determinant. The metric tensor
is symmetric, gµν = gνµ. Therefore it can be transformed at any
space-time-point P (but in general not globally) into a diagonal
matrix. Furthermore the transformation can (at any point, but
not globally) be chosen such, that Minkowski-metric holds. We
define it in the form

(ηαβ) ≡ diag(+1,−1,−1,−1) . (5)

The coordinate system with the metric ηαβ is the local inertial
system LS (i. e. the coordinate system of the tangent space at
point P ). (5) is a good approximation to the metric of a free
falling volume, whose extension in space and time is so small that
any gravitational effects, like e. g. tidal forces, are unmeasurable
small. We will see, however, and discuss in section 5 , that the
approximation (5) is not admissible in evaluations of the metric
field’s energy and momentum, not even if the volume is chosen
infinitesimal small.
The derivative with respect to xµ is marked either by a lower

case d or by a stroke in front of the index:

dAν

dxµ ≡ dµAν ≡ Aν|µ
dAν
dxµ ≡ dµAν ≡ Aν|µ . (6)

Ricci and Levi-Civita have shown, that the metric gµν can be
related at any point of spacetime to the Minkowski-metric ηαβ
of the tangent space at this point by means of a “tetrad” (four-
leg) [1]. The tetrad consists of four covariant unit vectors e→µ with
µ = 0, 1, 2, 3, which span the tangent space. While dxµ is just one
component of the four-dimensional vector dx, each one of the four
vectors e→µ is a complete four-dimensional vector. These vectors
have been written as an exception with arrows, to emphasize this
fact. All other four-dimensional vectors, for example dx, can be
discerned only by the absence of a component index. The unit
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vectors, which are dual to the four unit vectors e→µ, are defined due
to the relation

e→ν e→µ = e→να e→µβηαβ = gνµ = ηνµ (7a)

For them, the relations

e→µ
α e
→
µ
β = ηα

β = gα
β (7b)

e→ν e→µ = eν
α eµ

βηαβ = gνµ (7c)

hold. In particular, for the Nabla-operator

∇ = e→µ dµ (8)

holds. Thus the divergence of a contravariant vector field A(x) is

∇A = e→µ dµe→νAν = e→µ e→νdµAν + e→µAνdµe→ν

= gµνdµAν +Aαgµν e
→νdµe→α︸ ︷︷ ︸

Γνµα

= gµν
(

dµAν + ΓνµαAα︸ ︷︷ ︸
DµAν

)
. (9)

In the last line, the covariant derivative

DµA
ν ≡ dµAν + ΓνµαAα (10)

has been defined, which — different from the “normal” derivative
dµAν — is a tensor. The covariant derivative is marked either by
the letter D or by two parallel strokes in front of the index:

DµA
ν ≡Aν||µ ≡ dµAν + ΓνµαAα

DµAν ≡Aν||µ ≡ dµAν − ΓαµνAα
(11)

The direct computation of the Christoffel-symbols results into [2,
Kap. 11]

Γβνα ≡ e→βdνe→α = gβλ

2
(dgνλ

dxα + dgαλ
dxν −

dgαν
dxλ

)
. (12)
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In the LS, the Christoffel symbols Γνµα vanish. Therefore in the LS
the covariant derivative and the “normal” derivative are identical.
The curvature tensor Rµρστ is defined as the difference

RµρστAµ ≡ Aρ||τ ||σ −Aρ||σ||τ

Rµρστ =[2, (18.8)] dΓµρσ
dxτ −

dΓµρτ
dxσ + ΓνρσΓµντ − ΓνρτΓµνσ . (13)

The Ricci-tensor, which is showing up in the field equation (1), is
found due to contraction of the curvature tensor’s indices µ and σ:

Rρτ ≡ Rµρµτ =
dΓµρµ
dxτ −

dΓµρτ
dxµ + ΓνρµΓµντ − ΓνρτΓµνµ (14)

2. The Lagrangian of Empty Space-Time

We want to evaluate the metric field’s energy and momentum by
means of the Lagrange-formalism. For that purpose, we firstly
must find a Lagrangian, from which the field equation (1) can be
derived due to Hamilton’s principle of least action. The following
considerations are mainly based onto [3, Chap. 19].

We use the notation LEH for the Lagrangian of the empty metric
field (“classical vacuum”). The index EH is to signify Einstein-
Hilbert. We write the Lagrangian as a product

L
√
|g| ≡ LEH (15)

with a further function L, which — like LEH — is still unknown.
Both L and LEH have the dimension energy/volume. The volume
element

d4x′
√
|g′| = d4x

√
|g| (16)
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is invariant under arbitrary coordinate transformations, i. e. a
scalar, see [4, (18)] or [2, (17.11)]. We demand that the action

S =
∫
ω

d4x

c

√
|g|L︸ ︷︷ ︸
LEH

, (17)

in which ω denotes a simply connected closed range of four-di-
mensional spacetime, must be a scalar as well. Therefore also L —
different from LEH — must be a scalar. This is the first condition,
which we will use as a guideline in the search for L.

A second condition for L is resulting from this consideration:
Einstein’s field-equation of the vacuum depends on the metric
tensor (gµν), and quadratically on it’s first derivatives, and linearly
on it’s second derivatives. Therefore we demand, that L as well
shall depend on (gµν) and it’s first and second derivatives in the
same manner, but not on it’s derivatives of higher order. It is
proved in [5, chap. 6.2], that the Ricci-scalar R ≡ Rµµ is the only
scalar, which is depending in this manner on (gµν).

A third condition for L is resulting from dimensional considera-
tions: The dimension of L must be

[L] = energy
m3 = 1

m2
kg s2

m3
m4

s4 = [R] [c4]
[G] (18)

[R] = m−2 , [c] = m
s , [G] = m3

kg s2 .

As the fourth and last condition for L we stipulate, that Einstein’s
field theory shall reduce to Newton’s theory of gravitation in the
weak field limit.

The sum

L ≡ c4

16πG (R− 2Λ) (19)
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with an arbitrary constant Λ (which like R must be of dimension
m−2) meets all four conditions for L. Thus one finds the action

S =
∫
ω

d4x

c

√
|g| c4

16πG (gµνRµν − 2Λ)︸ ︷︷ ︸
LEH

. (20)

According to Hamilton’s principle, the variation of S must be
zero. The variation must be performed with respect to the com-
ponents gµν of the metric field, and with respect to it’s first and
second space-time-derivatives, which are contained within the Ricci-
tensor:

δS = δS1 + δS2 + δS3 = 0 (21)

δS1 ≡
c3

16πG

∫
ω

d4x
(
δ
√
|g|
)

(gµνRµν − 2Λ)

δS2 ≡
c3

16πG

∫
ω

d4x
√
|g|
(
δgµν

)
Rµν

δS3 ≡
c3

16πG

∫
ω

d4x
√
|g| gµν

(
δRµν

)
(22)

Note that δ
∫
ωd4x = 0, because we demand that δgµν , δ dαgµν , and

δ dαdβgµν shall be zero on the border (and outside) of the compact
four-dimensional spacetime volume ω. Only in the interior of ω
the metric and it’s derivatives are varied.
For the computation of δS1, we need

δ
√
|g| = δ

√
−g = −δ(g)

2
√
−g

. (23)

We apply Jacobi’s formula

δ det(Aµν) = det(Aµν) Tr{(Aµν)−1 δ(Aµν)} , (24)
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which is valid for arbitrary square matrices (Aµν) with non-vanish-
ing determinant. In case of the metric tensor, using (gµν)−1 = (gµν)
one gets

δ(g) = gTr{(gµν) δ(gµν)} = g gµν δgνµ . (25)

From this follows

δ
√
|g| (23)= 1

2
√
−g gµν δgνµ = −1

2
√
−g gµν δgνµ . (26)

We prove the last equation:

δgµν = 0 = δgµρgρν = (δgµρ)gρν + gµρδgρν
∣∣∣ · gνσ

(δgµρ)gρσ = −gνσgµρδgρν
∣∣∣µ↔ ρ

δgρσ = −gνσgρµδgµν
∣∣∣ ·Aρσ

Aρσ δg
ρσ = −Aµνδgµν , (27)

with (Aµν) being an arbitrary tensor.
δS2 is left unchanged. To compute δS3, we firstly consider the

curvature tensor of fourth order Rσµρν = (13). It is transformed
into a coordinate systems, which at some arbitrarily fixed point P
has the metric (5). At this point the Christoffel-symbols then are
zero, and the variation of the curvature tensor simplifies to

δRσµρν =
d(δΓσµρ)

dxν −
d(δΓσµν)

dxρ
= (δΓσµρ)|ν − (δΓσµν)|ρ in the LS at point P . (28)

In the LS, the covariant derivative and the “normal” derivative are
identical.

δRσµρν = (δΓσµρ)||ν − (δΓσµν)||ρ . (29)
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As δRσµρν = R′σµρν −Rσµρν , being the difference of two tensors,
again is a tensor, this equation — which is called Palatini-equation
— does not only hold in the LS at point P , but at any arbitrary point
in any arbitrary coordinate system. Now σ and ρ are contracted

δRµν = (δΓσµσ)||ν − (δΓσµν)||σ , (30)

and the result is inserted into

δS3 = c3

16πG

∫
ω

d4x
√
|g| gµν

(
(δΓσµσ)||ν − (δΓσµν)||σ

)
︸ ︷︷ ︸

(gµνδΓσµσ − gµτδΓνµτ )||ν

. (31)

The metric tensor may be pulled into the bracket, because it’s
covariant derivative is zero. Furthermore, contracted indices in the
last term have been re-named. As the variation of Γ is zero on
the surface A(ω) of the volume ω, δS3 must be zero. This can be
shown by means of the generalization of Gauß’ theorem to curved
Riemann-space:∫

ω

d4x
√
|g| V µ

||µ =
∫

A(ω)

d3x
√
|g|nµV µ (32)

A(ω) is indicating the three-dimensional surface of the four-dimen-
sional volume ω, n is the unit vector orthogonal to this surface, V
is an arbitrary vector field, and g is the determinant of the metric
tensor in the system of the coordinates x.

Thus one eventually gets Einstein’s field-equations of the vacuum:

δS
(21)= c3

16πG

∫
ω

d4x
√
|g|
(
Rµν −

1
2 gµν (R− 2Λ)

)
δgνµ = 0 (33)

=⇒ Rµν −
R

2 gµν + Λ gµν = 0
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This equation is (apart from the ES-tensor Tµν of the other fields
contained within space-time) identical to the field-equation (1).
This confirms, that LEH = (20) is a correct Lagrangian of empty
space-time.

3. Conservation of Energy and Momentum

When Einstein in 1916 published the first review of the young
General Relativity Theory [4], he put much emphasis onto the
proof of energy conservation in the metric field, which in this
theory is replacing Newton’s gravitational potential. In §15 of his
treatise he considers the conservation of energy and momentum in
the metric field alone, that is in the case of curved, but empty space-
time. In §16 through §18, he then enlarges the evaluation to the
case, that the curved space-time is containing an electromagnetic
field and/or material fields. He demonstrates, that in this case
energy and momentum is exchanged inbetween the metric field and
the other fields contained in it, such that conservation laws only
hold for the metric field and it’s contents together, but not for the
metric field or the other fields alone. We will in this section closely
follow Einstein’s delineation.

Firstly we set the cosmological constant Λ = 0, and re-formulate
the field equation (1):

Rµν −
R

2 gµν =(1) −8πG
c4 Tµν

∣∣∣ · gµν
R− R

2 gµνgµν︸ ︷︷ ︸
4

= −R = −8πG
c4 T

=⇒ Rµν = −8πG
c4

(
Tµν −

T

2 gµν
)

(34)
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∗ In his equation (29a), Einstein notes the following important
relation for the Christoffel-symbol with one contraction:

Γµρµ = gµα

2
dgµα
dxρ = 1

2
d ln |g|

dxρ with g ≡ det(gαβ) (35)

∗ Using (35), the Ricci-tensor (14) can be written in the form

Rρτ = 1
2

d2 ln |g|
dxρdxτ −

dΓµρτ
dxµ + ΓνρµΓµντ − Γνρτ

1
2

d ln |g|
dxν . (36)

∗ Einstein restricts his evaluation to coordinate systems, for which
|det(gµν)| = |g| = 1 holds. It becomes obvious from (35) and
(36), that the complexity of the formulae is considerably reduced
in this case. On page 815 Einstein assures to have conducted
the evaluations for the case |g| 6= 1 as well, and to have achieved
in principle identical results as in the case |g| = 1. “But I think,
that the communication of my quite lengthly considerations on
this topic would not be worthwhile, because there is nothing
essentially new in those results.” (my translation) Note, that the
condition |g| = 1 does not at all indicate a return to Minkowski-
metric. While |g| = 1 holds for Minkowski-metric as well,
Einstein is considering curved space-times with

dgµν
dxσ 6= 0 , Γµντ 6= 0 , |det(gµν)| = |g| = 1 .

While the Christoffel-symbol in general is different from zero,
it’s contracted form is zero in case |g| = 1, as is visible in (35).
∗ The field equations of space volumes, in which no type of energy
except for gravitational energy is contained (“vacuum”), simplify
to

Rµν
(34),(36)= −

dΓαµν
dxα + ΓβµαΓανβ = 0 if |g| = 1 , (37)
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and the Lagrangian

LEH
(20)=

√
|g|

2κ (R− 2Λ) , κ ≡ 8πG
c4 , (38)

which has been checked in the previous section, becomes in this
case with Λ = 0

LEH =(36) 1
2κ
(
− gµν

dΓβµν
dxβ + gµνΓαµβΓβαν

)
if |g| = 1 . (39)

As is well-known, the action integral’s variation is unchanged, if
the four-divergence of an arbitrary function of space-time is added
to the Lagrangian, see e. g. [6, Chap. 3]. As the covariant derivative
of the metric tensor is zero,

Dβg
µνΓβµν = gµν(dβΓβµν + ΓββαΓαµν) (35)= gµνdβΓβµν if |g| = 1

holds. Multiplying this four-divergence by 1/(2κ), and adding the
result to the Lagrangian (39), one gets the Lagrangian

L ≡ 1
2κ g

µνΓαµβΓβνα with κ ≡ 8πG
c4 if |g| = 1 . (40)

This Lagrangian is Einstein’s starting point. Firstly he checks
explicitly, that the field equation (37) can be derived due to the
variation of the action

δS = δ

∫
ω

d4x

c

√
|g| L√

|g|
= 0 if |g| = 1 .

ω is a simply connected, compact range of the four-dimensional
space-time-continuum. Because on the boundary (and beyond) of
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ω there is no variation, and because we restrict to |g| = 1, the
Lagrangian L is the only factor in the action, which is varied.

2κ δL = ΓαµβΓβνα δgµν + 2gµνΓαµβ δΓβνα
= 2Γαµβ δ (gµνΓβνα)︸ ︷︷ ︸

1
2 δ
[
gµνgβλ

(dgνλ
dxα + dgαλ

dxν −
dgαν
dxλ

)]−ΓαµβΓβνα δgµν (41)

Comparing this with Einstein’s equation at the bottom of page
804, one should note that we have defined the Christoffel-symbol
(12) with opposite sign. As the Christoffel-symbol is symmetric
in the both lower indices, in the underbraced expression µ and β,
and consequently ν and λ may be permuted. For that reason, the
both last terms of the underbraced expression vanish:

2κ δL = Γαµβ δ
[
gµνgβλ

dgνλ
dxα

]
− ΓαµβΓβνα δgµν (42)

Using

gντgµρ
dgτρ
dxσ = gντ

d(gµρgτρ)
dxσ︸ ︷︷ ︸

0

−gντ dgµρ

dxσ gτρ = −dgµν

dxσ (43a)

gντgµρ
dgτρ

dxσ = gντ
d(gµρgτρ)

dxσ︸ ︷︷ ︸
0

−gντ
dgµρ
dxσ gτρ = −dgµν

dxσ , (43b)

one gets

2κ δL = −Γαµν δ
(dgµν

dxα
)
− ΓαµβΓβνα δgµν . (44)

The differential quotients, which are needed for the computation
of the canonical field equation, can be read-off from this equation:

dα
∂L

∂(dαgµν) −
∂L
∂gµν

= 0

−dα Γαµν + ΓαµβΓβνα = 0 if |g| = 1 (45)
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This field equation is identical to (37). Thus L = (40) is indeed
a correct Lagrangian under the condition |g| = 1. Now Einstein
multiplies the field equation by dσgµν :

0 = (dσgµν)dα
∂L

∂(dαgµν) − (dσgµν) ∂L
∂gµν

= dα(dσgµν) ∂L
∂(dαgµν) −

∂L
∂(dαgµν) dσdαgµν −

∂L
∂gµν

dσgµν︸ ︷︷ ︸
−dσL

(46)

Here dαdσgµν = dσdαgµν has been used. This is the continuity
equation of the energy matrix tσα:

dαtσα = 0 (47)

tσ
α ≡ − 1

2κ
(
(dσgµν) ∂L

∂(dαgµν) − gσ
αL
)

(48)

=(40) 1
2κ
(
(dσgµν)Γαµν + gσ

αgµνΓτµβΓβντ
)

if |g| = 1

Note firstly, that the definition of the energy matrix has the same
form as the definitions of the energy tensors of other fields in
canonical field theory in Minkowski-metric [6, Chap. 4]. But here
we are considering metrics with dgρσ/dxτ 6= 0, because otherwise
tσ
α would be zero. The factor −2κ has been inserted, to get

the energy of Newton’s gravitational field in the limit of weak
gravitation. (Einstein considers that limit in §21 of his treatise.)

Note secondly, that (tσα) is not a tensor, because it is not form-
invariant under arbitrary coordinate transformations: Remember
the restriction |g| = 1. This restriction was visible already in
the definition (40) of the Lagrangian. L/

√
|g| is not a Riemann-

scalar under arbitrary transformations, but only under the addi-
tional condition |g| = 1. Consequently (tσα) = (48) will be called
energydensity-stress-matrix, or simply ES-matrix, of the metric
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field under the additional condition |g| = 1. We will discuss in
section 5 the consequences of the fact that the metric field’s ES-
matrix (tσα) = (48) is no tensor.
Now Einstein wants to clarify, how the ES-matrix is related to

the equation of the metric field. First he performs a short auxiliary
computation:

gντΓµστ + gµτΓνστ = gντ
gµρ

2
(dgτρ

dxσ + dgσρ
dxτ −

dgστ
dxρ

)
+

+ gµτ
gνρ

2
(dgτρ

dxσ + dgσρ
dxτ −

dgστ
dxρ

)
(49)

Four terms on the right side of this equation compensate, because
they differ only in the names of the contracted indices ρ and τ .
Therefore

gντΓµστ + gµτΓνστ = gντgµρ
dgτρ
dxσ

(43)= −dgµν

dxσ . (50)

Using this result, the ES-matrix (48) can be written in the form

−2κtσα = (gντΓµστ + gµτΓνστ )Γαµν − gσαgµνΓτµβΓβντ
κtσ

α = 1
2gσ

αgµνΓβντΓτµβ − gµνΓβνσΓαµβ if |g| = 1 (51)
κt = κtσ

σ = gµνΓβντΓτµβ because of gσσ = 4
κ(tσα − 1

2gσ
αt) = −gµνΓβνσΓαµβ if |g| = 1 . (52)

Multiplication of the field equation (45) by gνσ results into

−gνσ
dΓανµ
dxα + gνσΓβναΓαβµ = 0 if |g| = 1 . (53)

The first term is

−gνσ
dΓανµ
dxα = −

d(gνσΓανµ)
dxα + dgνσ

dxα Γανµ

=(50) −
d(gνσΓανµ)

dxα − gστΓνατ Γανµ − gντΓσατ Γανµ (54)
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The second term of this expression differs from the second term
of the field equation only by the names of two contracted indices.
Thus one gets the field equation

−
d(gνσΓανµ)

dxα −gντΓσατ Γανµ︸ ︷︷ ︸
+ κ (tµσ − 1

2gµ
σt)

= 0 if |g| = 1 . (55)

From this equation it becomes immediately obvious, how the field
equation shall be modified, if there are in addition to the metric
field further fields, like e. g. an electromagnetic field or a material
field: The ES-tensors Tµσ of the other fields must be added to the
ES-matrix tµσ of the metric field:

−
d(gνσΓανµ)

dxα = −κ
(
tµ
σ + Tµ

σ − 1
2gµ

σ(t+ T )
)

if |g| = 1 . (56)

We shift all terms with t, but not the terms with T , to the equation’s
left side, and transform the equation back again from the form
(55) to the form (53). Eventually multiplying both sides of the
equation by gνσ, one gets

Rµν = −
dΓανµ
dxα + ΓβναΓαβµ = −κ (Tµν − 1

2gµνT ) if |g| = 1 . (57)

To evaluate the conservation of energy and momentum for the
combination of the metric field and the material fields, Einstein
contracts (56) with regard to the indices µ and σ, multiplies the
result by 1

2gµ
σ, and subtracts the result from the original equation

(56):

−
d(gνσΓανµ)

dxα + 1
2gµ

σ d(gνρΓανρ)
dxα = κ (tµσ + Tµ

σ) (58)
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Then he computes the divergence of this equation with regard to
the index σ. For the first term one finds

−
d2(gνσΓανµ)

dxσdxα = − d2

dxσdxα
[
gνσ

gατ

2
(dgµτ

dxν + dgντ
dxµ −

dgνµ
dxτ

)]
.

As this expression is invariant, if at the same time α is permuted
with σ, and ν is permuted with τ , the first and the third term in
the large round bracket compensate.

−
d2(gνσΓανµ)

dxσdxα = − d2

dxσdxα
[
gνσ

gατ

2
dgντ
dxµ

] (43)= 1
2

d3gσα

dxσdxαdxµ
(59a)

The divergence of the second term in (58) with regard to the index
σ is

1
2

d2(gνρΓανρ)
dxµdxα = 1

2
d2

dxµdxα
[
gνρ

gατ

2
(dgρτ

dxν + dgντ
dxρ −

dgνρ
dxτ

)]
.

The last term is zero for any metric with |g| = 1 because of (35).
The remaining expression is symmetric in ν and ρ. Therefore it
can be combined to one term. Furthermore the contracted index ρ
is renamed to σ:

1
2

d2(gνρΓανρ)
dxµdxα = 1

4
d2

dxµdxα g
νσgατ · 2 dgντ

dxσ
(43)= −1

2
d3gσα

dxµdxαdxσ
(59b)

Thus the divergence of the left side of (58) in total is zero. Conse-
quently, the same must hold for the right side:

d
dxσ (tµσ + Tµ

σ) = 0 if |g| = 1 (60)

This result proves: Conservation laws do hold neither for energy and
momentum of the metric field alone, nor for energy and momentum
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alone of those fields which are contained within space-time. Instead
only the sums of the energies and the sums of the momenta of
the metric field and of it’s contents are conserved, i. e. energy and
momentum can be exchanged in-between the metric field and the
fields contained in it.

We would like to get rid of the restricting condition |g| = 1, and
prove instead a formula like

d
dxσ (tµσ + Tµ

σ) ?= 0 with arbitrary |g| .

But it is impossible to find a uniquely defined tµσ for the general
case with arbitrary |g|, see section 5 . Still we can prove an impor-
tant result regarding the conservation of energy and momentum in
the general case. We start from the field equation

Rµν − R

2 gµν + Λ gµν (1)= −8πG
c4 Tµν

(39)= −κTµν ,

which is valid for arbitrary |g| . Thus for arbitrary |g|

dν
(Rµν
κ
− R

2κ g
µν + Λ

κ
gµν

)
= −dνTµν . (61)

Rµν/κ − Rgµν/(2κ) + Λgµν/κ 6= tµν is not the metric field’s ES-
tensor, but it is clearly a tensor, and it’s divergence is obviously
identical to the divergence of the ES-matrix tµν of the metric field,
see (60). Thus, while no tensor formulation for energy and mo-
mentum of the metric field can be found, (61) is a sound covariant
formulation for the conservation of energy and momentum.
In special relativity, equations of continuity

Tµν |ν = 0 with µ = 0, 1, 2, 3 if gµν(x) = ηµν ∀x (62)

hold for the sum of all fields (including the gravitational field)
contained within space-time. This is interpreted as the conservation
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of energy density and momentum density of the fields represented
by (Tµν). In case of GRT, the energy and momenta which are
stored in the metric field are not booked in (Tµν), but somewhere
within the tensor on the left side of equation (61).

If within some space-time area Minkowski-metric is valid, then

dνTµν = 0 (if Minkowski-metric is valid) (63)

describes the conversation of energy- and momentum-density of
the fields contained in that area. The covariant tensor-equation,
which reduces to this limit, and stays form-invariant under trans-
formations into arbitrary accelerated reference systems, is

Dν T
µν = dν Tµν + ΓµναTαν + ΓνναTµα = 0 . (64)

Consequently one finds, using (61):

dν Tµν =−ΓµναTαν − ΓνναTµα

dν
(Rµν
κ
− (R− 2Λ) gµν

2κ
)

= +ΓµναTαν + ΓνναTµα
(65)

On the right hand sides of these both equations, the amount
of energy- and momentum-density is listed, which is exchanged
inbetween the metric field and it’s contents. Conservation laws
neither hold for the metric field alone nor for the material fields
alone, but only for their combination. I. e. energy and momentum
are exchanged in-between space-time and it’s material contents.
Only in the vacuum Tµν = 0 the second equation simplifies to

dν
(
Rµν − R

2 gµν + Λ gµν
)

= 0 if Tµν = 0 . (66)

4. The Dynamic ES-Tensor

We have derived the equation of the free metric field from a
Lagrangian, but then we have inserted the ES-tensor T “by hand”
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into equation (56). We now will try to derive the ES-tensor as well
systematically from a Lagrangian.
A suitable Lagrangian has been proposed by Einstein in [7].

There he assumes, that the Lagrangian does depend on the metric
field gτµ, on it’s first and second derivatives dαgτµ and dαdβgτµ,
on the fields φr which are contained within spacetime, and on their
first derivatives dαφr. He assumes in addition, that the Lagrangian
can be written as L = LEH + LM . LEH is the Lagrangian of
empty spacetime, which was indicated already in (20). LM is the
Lagrangian of the matter (including the electromagnetic field),
which is contained in spacetime. Furthermore he assumes, that LM
does depend only on (gτσ), φr, and dµφr, but not on the derivatives
of (gτσ). We adopt this ansatz, and insert into the variation (21)
of the integral of action the following fourth term:

δS4 =
∫
ω

d4x

c
δLM =

∫
ω

d4x

c

√
|g|
2
( 2√
|g|
δLM
δgµν︸ ︷︷ ︸

Tµν

)
δgµν . (67)

The tensor Tµν defined this way, is called the “dynamic” ener-
gydensity-stress-tensor. Thus one eventually gets Einstein’s field
equation:

δS
(33)= c3

16πG

∫
ω

d4x
√
|g| ·

·
(
Rµν −

1
2 gµν (R− 2Λ) + 8πG

c4 Tµν
)
δgνµ = 0 (68)

=⇒ Rµν −
R

2 gµν + Λ gµν = −8πG
c4 Tµν (69)

When Einstein in 1916 published his ansatz (67), according to
which the variation δS4 of the action can be completely described
by the variation δgµν of LM with respect to the metric field, he
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could not know that Dirac twelve years later would introduce
spinor fields into physics. (67) is not correct in the case of spinor
fields. Stretching the metric gµν is equivalent to shrinking the field
amplitudes ψ and their derivatives dµψ in time-position-space. But
the variation in spinor-space, which is necessary as well, can not
be replaced by the variation δgµν .
The left side of the field equation

Rµν −
R

2 gµν + Λ gµν
(69)= −8πG

c4 Tµν

is invariant under permutation of µ and ν. Consequently the same
must hold for the right side. At first sight, the “dynamic” ES-
tensor

Tµν ≡
2√
|g|

δLM
δgµν

, (70a)

which was defined in (67), seems to comply to that condition,
because gµν = gνµ is symmetric, and LM/

√
|g| is a scalar. The

definition of the dynamic ES-tensor differs significantly from the
definition of the canonical ES-tensors, which in case of a rigid
metric (that is: in the case of Special Relativity Theory) is given
by

Tµν ≡
∑
r

∂L
∂(dµφr)

dνφr − gµνL if gµν(x) = ηµν ∀x , (70b)

see e. g. [6, Chap. 4.2]. The sum is running over all components
of all fields φr, which are contained in the Lagrangian L. One
clearly must stipulate, that the both definitions (70) of the ES-
tensor match in the limit gµν(x) → ηµν ∀x. We now will investi-
gate, whether the ES-tensors of the real Klein-Gordan field, of the
electromagnetic field, and of the Dirac field, are symmetric.
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(a) Real Klein-Gordan Field
The metrically covariant Lagrangian of the real Klein-Gordan field
is

LM =
√
|g|
(c2~2

2 gµν(Dµφ)Dνφ−
m2c4

2 φ2
)
. (71)

Variation of this field’s action with respect to the metric field (gµν)
results into

δS =
∫
ω

d4x

c

(
δ
√
|g|
)(c2~2

2 gµν(Dµφ)Dνφ−
m2c4

2 φ2
)

+

+
∫
ω

d4x

c

√
|g| c

2~2

2
(
δgµν

)
(Dµφ)Dνφ

=(26)
∫
ω

d4x

c

√
|g|
2

[
− gµν

c2~2

2 gρσ(Dρφ)Dσφ+ gµν
m2c4

2 φ2 +

+ c2~2 (Dµφ)Dνφ
]
δgµν = 0 . (72)

Comparing this with (68), one finds the dynamic ES-tensor

Tµν = c2~2 (Dµφ)Dνφ− gµν
(c2~2

2 gρσ(Dρφ)Dσφ−
m2c4

2 φ2
)

=(71)
c2~2 (Dµφ)Dνφ−

gµνLM√
|g|

. (73)

In the limit gµν(x)→ ηµν ∀x, this is identical to the canonical ES-
tensor, see e. g. [6, Chap. 7.3]. This ES-tensor is symmetric under
permutation of µ and ν.

(b) Electromagnetic Field
The electromagnetic field’s metrically covariant Lagrangian is

LM =
√
|g|
(
− 1

4µ0
gµρgνσFρσFµν

)
. (74)
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The variation of this field’s action with respect to the inverse metric
field (gµν) results into

δS =
∫
ω

d4x

c

(
δ
√
|g|
) (
− 1

4µ0
gµρgνσFρσFµν

)
+

+
∫
ω

d4x

c

√
|g|
(
− 1

4µ0
(δgµρ)gνσFρσFµν −

1
4µ0

gµρ(δgνσ)FρσFµν
)

(26)=
∫
ω

d4x

c

√
|g|
2

(
− 1
µ0

FµσFν
σ − gµν

[
− 1

4µ0
F ρσFρσ︸ ︷︷ ︸

LM /
√
|g|

])
δgµν .

Comparing this with (68), one finds that the expression in the
round brackets is the dynamic ES-tensor:

Tµν = − 1
µ0

FµσFν
σ − gµνLM√

|g|
(75)

The dynamic ES-tensor is symmetric under permutation of µ and
ν. Thereby it differs from the electromagnetic field’s canonical ES-
tensor

T µν = − 1
µ0
FµτdνAτ − gµνL =

= + 1
µ0

(
(dτAµ)dνAτ − (dµAτ )dνAτ

)
− gµνL , (76)

as can be read for example in [6, appendixA.24]. But it is delin-
eated in [6, appendixA.25], how the canonical ES-tensor can be con-
verted — without changing the conserved quantities — such, that
it becomes symmetric. The electromagnetic field’s symmetrized
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canonical ES-tensor is

Tµν = 1
µ0

F τµdνAτ − gµνL −
1
µ0

F τµdτAν

= − 1
µ0

FµτF ντ − gµνL . (77)

Thus it is identical to the dynamic ES-tensor (75) in the limit
gµν(x)→ ηµν ∀x.

(c) Dirac-Field
The Dirac field’s (e. g. the electron-positron field’s) metrically co-
variant Lagrangian is

LM =
√
|g| ψ

(
i~cgµνγµDν −mc2

)
ψ . (78)

The variation of this field’s action with respect to the inverse metric
field (gµν) results into

δS =
∫
ω

d4x

c

(
δ
√
|g|
)
ψ
(
i~cgµνγµDν −mc2

)
ψ+

+
∫
ω

d4x

c

√
|g| ψi~c(δgµν)γµDν ψ

=(26)
∫
ω

d4x

c

√
|g|
{
ψ i~cγµDν ψ−

− gµν
2
[
ψ
(
i~cγαDα −mc2

)
ψ︸ ︷︷ ︸

LM /
√
|g|

]}
δgµν . (79)

Comparing this with (68), one finds that the expression in the
curly brackets is the dynamic ES-tensor:

Tµν = ψ i~cγµDν ψ −
gµνLM
2
√
|g|

(80)
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The ES-tensor is not symmetric under permutation of µ and ν:

ψ γµDν ψ 6= ψ γνDµ ψ (81)

It also is differing from the Dirac field’s asymmetric canonical ES-
tensor

Tµν = ∂L
∂(dµψ)

dνψ + ∂L
∂(dµψ) dνψ − gµνL

= ψ i~cγµdνψ − gµνL (82)

by a factor 1/2 in the last term.
One could simply replace the faulty dynamic ES-tensor by the

symmetrized canonical ES-tensor

T ρσ = i~c
4
(
− (dρψ)γσψ − (dσψ)γρψ + ψγρdσψ + ψγσdρψ

)
−

− gρσ ψ(i~cγνdν −mc2)ψ︸ ︷︷ ︸
L

, (83)

which is derived in [6, appendixA.25]. This ES-tensor obviously is
symmetric under permutation of ρ and σ. But actually the problem
is routed much deeper, and would be amended only superficially by
that method. Fields, which have only space-time-components (like
for example the Klein-Gordan field or the electromagnetic field)
are invariant under a rotation of 2π around an arbitrary axis of
three-dimensional position space. In contrast, the amplitudes of
spinor fields (i. e. all fields with half-integer spin) change the sign
under a rotation of 2π in position space, and are invariant only
under rotations of 4π. That makes some basic modifications of
GRT necessary, which are exceeding by far a simple correction of
the ES-tensor. These modifications are described e. g. in [1].
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5. Are GRT and the energy concept compatible?

In the previous sections, it has been pointed out repeatedly that it
is impossible to specify within the formalism of Einstein’s GRT an
unambiguous closed expression for the metric field’s energy-stress-
tensor. This has been proved many times in the literature, see for
example [8]. We have emphasized that (tσα) = (48) isn’t a tensor,
but merely a matrix. Given this situation, isn’t the concept of
energy and momentum as conserved quantities endangered?
Before we turn to that question, we upfront comment on a

simpler problem, which actually is merely an alleged problem: The
equivalence principle, which is a cornerstone in the foundations of
GRT, may be formulated as follows:

In a local reference system, which is freely falling in a
gravitational field, and sufficiently small in space and
time, any effect of the gravitational field is unmeasurable.

(84)

Unfortunately, this has mislead some authors to the over-simplified
(i. e. wrong!) assumption, that Minkowski metric holds within the
small free-falling system. If that assumption would be true, then
the Christoffel-symbols

Γβνα
(12)= gβλ

2
(dgνλ

dxα + dgαλ
dxν −

dgαν
dxλ

)
would be zero, and consequently the ES matrix

tσ
α (48)= 1

2κ
(
(dσgµν)Γαµν + gσ

αgµνΓτµβΓβντ
)

if |g| = 1

of the metric field would be zero. The energy density of the metric
field is clearly different from zero in the neighborhood of a heavy
body, say the earth. Hence this energy density can not be zero in
a small reference system which is in free fall towards earth.
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Formally, the alleged problem results from the fact that in a

Taylor expansion of the metric tensor around the space point x = 0
the linear terms proportional to x indeed are zero, if the coordinate
system is (without rotation) in free fall in a gravitational field.
But the higher order terms are not zero! Instead the expansion in
“Fermi normal coordinates” gives (see e. g. [9]):

g00(x) = η00︸︷︷︸
+1

+R0i0j(0)xixj +O(|x|3) (85a)

g0k(x) = η0k︸︷︷︸
0

+2
3 R0ikj(0)xixj +O(|x|3) (85b)

gkl(x) = ηkl︸︷︷︸
−δkl

+1
3 Rkilj(0)xixj +O(|x|3) (85c)

(ηαβ) = (5) = Minkowski metric
Rµρστ (0) = (13) = curvature tensor at x = 0

If the curvature tensor is different from zero in one coordinate
system, then it can not be transformed to zero due to a change of
the coordinate system. Thus, to get correct results, the expansion
must not be stopped after the linear term (which is zero in this
case), not even in an infinitesimal small neighborhood of x = 0 .
This is the reason for the careful formulation (84) of the equivalence
principle. While deviations of the metric tensor from (η) have no
measurable effects within a sufficiently small free falling laboratory,
they are definitively not mathematically zero if the curvature tensor
is different from zero.
The second question, regarding the consequences of the ES-

matrix (tσα) = (48) not being a tensor, is less simple to answer.
On May-16-1918, Einstein addressed the issue in a lecture read
to the Prussian Academy of Science [10]. There he essentially
presented, though in an integral form, our equation (61): While
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the ES-matrix is no tensor, the divergence (61) obviously is a well-
behaving tensor. Thus the exchange of energy and momentum
between the metric field and it’s contents obey precise covariant
conservation laws.
The situation is somewhat reminiscent to the status of entropy

after this notion had been established in the eighteen-fifties by
Clausius. While half a century later Nernst found an argument to
assign a zero-point to entropy, physicists had been content with
a definition which fixed only differences of entropy, but not it’s
absolute value. And even by today in almost all applications of
this notion only differences of entropy matter.

What is the problem if only the exchange of energy and momen-
tum of the metric field with it’s content is well defined due to (61),
while the absolute value of energy and momentum stored in the
metric field remains undefined?

The absolute values of energy and momentum stored in the fields
within spacetime (e. g. in the electromagnetic field) are important,
because they curve the metric field according to

Rµν − R

2 gµν + Λ gµν (1)= −8πG
c4 Tµν . (86)

Therefore the allegedly infinite or at least huge zero-point values
of the ES-tensors Tµν of elementary quantum fields had been a
serious concern, which caused much debate and confusion.1

Note, however, that the curvature of spacetime described by (86)
is the only point where the absolute values of the Tµν are of any
relevance. The metric field is not curved by it’s own energy and
momentum. Thus not any effect is known, for which the absolute
value of energy and momentum stored in the metric field could be
1 If you are interested in the question of the zero-point energy and momentum
of elementary fields, sometimes referred to as “the cosmological constant
problem”, read [11].
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of importance. If an ES-tensor of the metric field could be found,
which really meets the formal criteria for a tensor within GRT, it
would be a completely useless quantity.

Therefore Einstein was right when he claimed[10] that the deficit
of a covariant ES-tensor of the metric field in GRT should not be
misinterpreted as a problem regarding the conservation of energy
and momentum.
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