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Interaction of 2-level systems
and electromagnetic radiation

The interaction of quantum mechanical 2-level systems and electromag-
netic radiation is outlined in detail. Rabi-oscillations and the dynamics
of the Bloch vector are described for coherent and incoherent systems.
Eventually we deal with Ramsey interferences and their practical use for
precise time measurements by means of atomic clocks.

1. Rabi-oscillations of coherent 2-level systems

The theory of the interaction of quantum-mechanical 2-level sys-
tems and electromagnetic radiation, which will be presented in
very detail in this article, has been worked out mainly by Isidor
Rabi (1898 – 1988) and Felix Bloch (1905 – 1983). It is a semi-
classical theory. In this context, semiclassical means that the 2-
level system is treated quantum-mechanically, while the electro-
magnetic field, with which it is interacting, is treated classically.
In state |1〉 the quantum system’s energy is ε1, in state |2〉 it’s
energy is ε2 > ε1. The system is irradiated with narrow-band
electromagnetic radiation of frequency

ω = (ε2 − ε1)/~ + δ = ω2 − ω1 + δ . (1)

The detuning δ of the radiation versus the resonance frequency
ω2 − ω1 may be larger, smaller, or equal to zero. We assume that
the energies of all other excited states of the system are so high,
that they can be safely ignored in the sequel.
Without radiation, the Hamilton operator of the 2-level system
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is

H0 = |1〉ε1〈1|+ |2〉ε2〈2| . (2)

We confine ourselves to the electric dipole approximation, in which
the magnetic field of the electromagnetic radiation is neglected,
and the interaction energy is approximated by

HW
dipole approximation

≈ −dÊ cos(−ωt) . (3)

d is the electric dipole moment of the 2-level system, Ê is the
amplitude of the electric field, ω is the field’s frequency, and t is
representing time. As the wavelength of the radiation is much
larger than the size of the 2-level system, the space coordinates
of the electric field are ignored, and only it’s time coordinate is
considered.

The Hamilton operator of the interacting system can be expanded
with regard to the vectors |1〉 and |2〉, which span the 2-level systems
2-dimensional Hilbert space:

H =(2),(3) |1〉ε1〈1|+ |2〉ε2〈2| − |1〉 〈1|dÊ|1〉︸ ︷︷ ︸
0

cos(−ωt)〈1| −

− |1〉 〈1|dÊ|2〉︸ ︷︷ ︸
~Ω∗

R 6=0

cos(−ωt)〈2| − |2〉 〈2|dÊ|1〉︸ ︷︷ ︸
~ΩR 6=0

cos(−ωt)〈1| −

− |2〉 〈2|dÊ|2〉︸ ︷︷ ︸
0

cos(−ωt)〈2| . (4)

Here the Rabi frequency

ΩR ≡
1
~
〈2|dÊ|1〉 = 1

~

(
〈1|dÊ|2〉

)∗
(5)

has been defined. In general, it is complex. Alternatively, some
authors define the matrix elements of the system’s electric dipole
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moment d onto the polarization axis of the electromagnetic radia-
tion:

d12 ≡ 〈1|dê|2〉 = ~Ω∗R
|Ê|

(6a)

d21 ≡ 〈2|dê|1〉 = ~ΩR

|Ê|
= d∗12 (6b)

ê ≡ Ê/|Ê|

The moduli of the matrix elements 〈2|dÊ|1〉 of absorption and
〈1|dÊ|2〉 of stimulated emission are equal. For the moment being,
we stipulate that Ê is so large that spontaneous emission and other
relaxation mechanisms (e. g. excitations of vibration, or collisions
with other systems) are negligible versus stimulated emission. Only
in section 3 we will drop this assumption.
The 2-level system’s generic state function

|ψ〉 = c1e
−iω1t|1〉+ c2e

−iω2t|2〉 (7)
c1(t), c2(t) ∈ C , |c1|2 + |c2|2 = 1

evolves in time according to the Schrödinger equation:

i~
∂

∂t
|ψ〉 = H |ψ〉 (8)

i~(ċ1 − iω1c1)e−iω1t|1〉+ i~(ċ2 − iω2c2)e−iω2t|2〉 =

=
(
ε1c1e

−iω1t − ~Ω∗R cos(−ωt)c2e
−iω2t

)
|1〉+

+
(
ε2c2e

−iω2t − ~ΩR cos(−ωt)c1e
−iω1t

)
|2〉

Here 〈1|1〉 = 〈2|2〉 = 1 and 〈1|2〉 = 0 has been used. As |1〉 and |2〉
are linearly independent, we get two differential equations for the
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probability amplitudes c1 and c2:

i(ċ1 − iω1c1) = ω1c1 − Ω∗R cos(−ωt)c2e
−i(ω2−ω1)t

ċ1 = +i Ω∗Rc2
2

(
e−i(ω2−ω1+ω)t + e−i(ω2−ω1−ω)t

)
i(ċ2 − iω2c2) = ω2c2 − ΩR cos(−ωt)c1e

+i(ω2−ω1)t

ċ2 = +i ΩRc1
2

(
e+i(ω2−ω1−ω)t + e+i(ω2−ω1+ω)t

)
Because of ω2 − ω1 ≈ ω, one exponential function in each equation
is oscillating very fast as compared to the other. We skip the fast
oscillating terms, this is called the “rotating wave approximation”.
Furthermore we insert δ (1)= ω − (ω2 − ω1):

ċ1 = iΩ∗R
2 e+iδt c2 (10a)

ċ2 = iΩR

2 e−iδt c1 (10b)

For the solution of this system of coupled first-grade differential
equations, the literature recommends the ansatz

c1 =
(
a1e

+iΩt/2 + b1e
−iΩt/2

)
e+iδt/2 (11a)

c2 =
(
a2e

+iΩt/2 + b2e
−iΩt/2

)
e−iδt/2 (11b)

with indeterminate constants a1, b1, a2, b2 ∈ C and Ω ∈ R. The
frequency Ω must be real, because otherwise one of the exponential
functions in each equation would become infinite for t → ∞,
and thus the condition |c1|2 + |c2|2 = 1 could impossibly be met.
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Inserting (11) into (10) gives

ċ1 = + iδ

2
(
a1e

+iΩt/2 + b1e
−iΩt/2

)
e+iδt/2 + iΩ

2 a1e
+iΩt/2e+iδt/2−

− iΩ
2 b1e

−iΩt/2e+iδt/2

= i
( Ω + δ

2 a1e
+iΩt/2 − Ω− δ

2 b1e
−iΩt/2

)
e+iδt/2

= iΩ∗R
2 e+iδt

(
a2e

+iΩt/2 + b2e
−iΩt/2

)
e−iδt/2 (12a)

ċ2 = − iδ2
(
a2e

+iΩt/2 + b2e
−iΩt/2

)
e−iδt/2 + iΩ

2 a2e
+iΩt/2e−iδt/2−

− iΩ
2 b2e

−iΩt/2e−iδt/2

= i
( Ω− δ

2 a2e
+iΩt/2 − Ω + δ

2 b2e
−iΩt/2

)
e−iδt/2

= iΩR

2 e−iδt
(
a1e

+iΩt/2 + b1e
−iΩt/2

)
e+iδt/2 . (12b)

Thus (11) indeed solves the equations (10), if the conditions
Ω + δ

2 a1e
+iΩt/2 − Ω− δ

2 b1e
−iΩt/2 = Ω∗R

2
(
a2e

+iΩt/2 + b2e
−iΩt/2

)
Ω− δ

2 a2e
+iΩt/2 − Ω + δ

2 b2e
−iΩt/2 = ΩR

2
(
a1e

+iΩt/2 + b1e
−iΩt/2

)
are met. These conditions must be met in particular at t = 0 :

Ω + δ

2 a1 −
Ω− δ

2 b1 = Ω∗R
2
(
a2 + b2

)
(14a)

Ω− δ
2 a2 −

Ω + δ

2 b2 = ΩR

2
(
a1 + b1

)
(14b)

With

c1(t = 0) = a1 + b1 (15a)
c2(t = 0) = a2 + b2 , (15b)
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we get from (14)

a1 = Ω− δ
2Ω c1(t = 0) + Ω∗R

2Ω c2(t = 0) (16a)

b1 = Ω + δ

2Ω c1(t = 0)− Ω∗R
2Ω c2(t = 0) (16b)

a2 = Ω + δ

2Ω c2(t = 0) + ΩR

2Ω c1(t = 0) (16c)

b2 = Ω− δ
2Ω c2(t = 0)− ΩR

2Ω c1(t = 0) . (16d)

Now we stipulate the boundary condition, that the system is
prepared in state |1〉 at time t = 0:

|c1(t = 0)|2 = 1 =⇒ c1(t = 0) = eiζ , ζ ∈ R (17a)
|c2(t = 0)|2 = 0 =⇒ c2(t = 0) = 0 (17b)

With this boundary condition, (16) simplifies to

a1 = +Ω− δ
2Ω eiζ (18a)

b1 = +Ω + δ

2Ω eiζ (18b)

a2 = +ΩR

2Ω eiζ (18c)

b2 = −ΩR

2Ω eiζ , (18d)

and the solution (11) becomes

c1 =
(

+ Ω− δ
2Ω e+iΩt/2 + Ω + δ

2Ω e−iΩt/2
)
eiζ+iδt/2

=
(

cos(Ωt/2)− iδ

Ω sin(Ωt/2)
)
eiζ+iδt/2 (19a)
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c2 =
(

+ ΩR

2Ω e+iΩt/2 − ΩR

2Ω e−iΩt/2
)
eiζ−iδt/2

= iΩR

Ω sin(Ωt/2) eiζ−iδt/2 . (19b)

The constant phase angle ζ is irrelevant, and remains indetermi-
nate. To determine the unknown frequency Ω, we make use of the
condition

|c1|2 + |c2|2 = 1 . (20)

Inserting (19) into (20) gives

cos2(Ωt/2) + δ2

Ω2 sin2(Ωt/2) + |ΩR|2

Ω2 sin2(Ωt/2) = 1 ,

and consequently

δ2

Ω2 + |ΩR|2

Ω2 = 1 =⇒ Ω = ±
√
|ΩR|2 + δ2 .

From (19) we see, that the sign of Ω may be chosen arbitrarily. We
decide for

Ω = +
√
|ΩR|2 + δ2 . (21)

Ω is called the generalized Rabi frequency.
Thus the probabilities of the two states are

|c1(t)|2 = cos2(Ωt/2) + δ2

Ω2 sin2(Ωt/2) (22a)

|c2(t)|2 = |ΩR|2

Ω2 sin2(Ωt/2) . (22b)

The function sin2(Ωt/2) is oscillating twice as fast as the function
sin(Ωt/2). The probabilities |c1(t)|2 and |c2(t)|2 are oscillating with
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frequency Ω between their min- and max-values. If the radiation
is exactly tuned to the 2-level system’s resonance frequency, i. e.
if δ = ω − (ω2 − ω1) = 0, then the system is oscillating with the
Rabi frequency |ΩR|. If the radiation is detuned, i. e. if δ 6= 0,
then the system is oscillating with the generalized Rabi frequency
Ω = (21) > |ΩR|.
At time

Tπ ≡
π

Ω = π√
|ΩR|2 + δ2 (23)

|c2(t)|2 reaches first time it’s maximum value

|c2(Tπ)|2 = |c2(t)|2max = |ΩR|2

Ω2 = |ΩR|2

|ΩR|2 + δ2 . (24)

Only if δ = ω − (ω2 − ω1) = 0, |c2(t)|2 reaches the value 1 and
|c1(t)|2 reaches the value 0 . If δ 6= 0, then the min and max values
are |c2(t)|2max < 1 and |c1(t)|2min > 0 .
Summary: If the system is at t = 0 in state |1〉, then it will be

due to interaction with the radiation field at time t > 0 in state

|ψ〉 =(7)
c1e
−iω1t|1〉+ c2e

−iω2t|2〉 (25)

c1 =(19) ( cos(Ωt/2)− iδ

Ω sin(Ωt/2)
)
ei(ζ+δt/2)

c2 =(19) iΩR

Ω sin(Ωt/2) ei(ζ−δt/2)

Ω =(21) +
√
|ΩR|2 + δ2 .

At the end of a radiation pulse of duration Tπ = (23), simply
called π-pulse for brevity, the system’s state is

|ψ〉 (25)= − iδΩ ei(ζ−ω1t+δTπ/2) |1〉+ iΩR

Ω ei(ζ−ω2t−δTπ/2) |2〉 , (26a)
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resp. with exact tuning δ = ω−(ω2−ω1) = 0 of the electromagnetic
wave to the 2-level system in state

|ψ〉 = ei(ζ−ω2t) |2〉 . (26b)

Besides a phase change, the system will stay in this state as long
as there is no further radiation. If a second π-pulse is applied
immediately1 after the first π-pulse, the system is forced back into
the state

|ψ〉 (25)= −ei(ζ−ω1t+δTπ)|1〉 ,

which differs only by a phase factor from the initial state. If |1〉
is the system’s state at t = 0, then a π/2−pulse, i. e. a radiation
pulse of duration

Tπ/2 ≡
π/2
Ω = π/2√

|ΩR|2 + δ2 , (27)

will force it into the state

|ψ〉 (25)=
√

1
2
[(

1− iδ

Ω
)
ei(ζ−ω1t+δTπ/2/2)|1〉+

+ iΩR

Ω ei(ζ−ω2t−δTπ/2/2)|2〉
]
, (28a)

resp. with exact tuning δ = ω−(ω2−ω1) = 0 of the electromagnetic
wave to the 2-level system into the state

|ψ〉 (25)=
√

1
2
(
ei(ζ−ω1t)|1〉+ iei(ζ−ω2t)|2〉

)
. (28b)

If the system is evaluated in state (28b), then it will be found with
probability 1/2 in state |1〉, and with probability 1/2 in state |2〉.
1 In section 4 the effect of a time delay between two radiation pulses will be
evaluated.
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We emphasize again, that all results of this section and the next
section are valid only under the precondition, that transitions |2〉 →
|1〉 happen exclusively due to stimulated emission of radiation, i. e.
that spontaneous emission and other relaxation mechanisms are
negligible. Only in section 3 we will drop this precondition.

2. Density matrix and Bloch vector

The state (25) is a “pure” state, i. e. there is a well-defined phase
relation between the two terms of (25).
Consider an operator A, which is representing an observable of

the 2-level system. The expectation value of this observable is

〈A〉ψ = 〈ψ|A|ψ〉 with ψ = (25) . (29)

Alternatively and equivalently, this expectation value can be com-
puted by means of the density operator ρ:

〈A〉ψ = tr(ρA) (30a)
ρ ≡ |ψ〉〈ψ| (30b)

tr(ρA) is the trace of the operator product ρA. The advantage
of the density operator is, that (30) — in contrast to (29) — is
still applicable if ψ is not a pure state but a mixture, i. e. if the
relative phase angle between the two terms of (25) is irregularly
fluctuating. This case will be considered in section 3 .
In the density-matrix-formalism, the Schrödinger equation is

replaced by the vonNeumann-Liouville equation

ρ̇ =(30b) ˙|ψ〉〈ψ|+ |ψ〉 ˙〈ψ|

=(8) − i
~

(
H|ψ〉〈ψ| − |ψ〉〈ψ|H

)
=(30b) − i

~
[H, ρ ] . (31)
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The 2-level system’s density operator is

ρ
(30b)= |ψ〉〈ψ| (25)= c1c

∗
1|1〉〈1|+ c2c

∗
2|2〉〈2|+

+ c1c
∗
2e

+i(ω2−ω1)t|1〉〈2|+ c2c
∗
1e
−i(ω2−ω1)t|2〉〈1| . (32)

As commonly done in the literature, we use the same sign ρ for
the density operator and for the density matrix, and leave it to
the reader’s attention to discern what is meant in any case. The 2-
level system’s density matrix is defined by

ρ ≡
(
ρ11 ρ12
ρ21 ρ22

)
≡
(
〈1|ρ|1〉 〈1|ρ|2〉
〈2|ρ|1〉 〈2|ρ|2〉

)
=

=(32)
(

c1c
∗
1 c1c

∗
2e

+i(ω2−ω1)t

c2c
∗
1e
−i(ω2−ω1)t c2c

∗
2

)
. (33)

Inserting (25), we get

ρ11 = cos2(Ωt/2) + δ2

Ω2 sin2(Ωt/2) (34a)

ρ22 = |ΩR|2

Ω2 sin2(Ωt/2) (34b)

ρ21 = ρ∗12 (34c)

ρ12 = −Ω∗R
Ω sin(Ωt/2)

( δ
Ω sin(Ωt/2) + i cos(Ωt/2)

)
·

· ei(ζ−ζ+ωt) . (34d)

If (25) wasn’t a pure state but a mixture, with the phase angle ζ1
of the first term varying irregularly versus the phase angle ζ2 of
the second term, then there would be the factor

mean value
(
e±i(ζ1−ζ2)

)
= 0
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instead of the factor ei(ζ−ζ) = 1 in the off-diagonal elements of the
density matrix, and consequently these elements would vanish.
The Bloch vector V ≡ (Vx, Vy, Vz) is defined by

Vx ≡ ρ21e
iωt + ρ12e

−iωt (35a)

=(34) −(ΩR + Ω∗R)δ
Ω2 sin2(Ωt/2) + i

ΩR − Ω∗R
Ω sin(Ωt/2) cos(Ωt/2)

=if ΩR∈R −2ΩRδ

Ω2 sin2(Ωt/2)

Vy ≡ iρ21e
iωt − iρ12e

−iωt (35b)

=(34) −i (ΩR − Ω∗R)δ
Ω2 sin2(Ωt/2)− ΩR + Ω∗R

Ω sin(Ωt/2) cos(Ωt/2)

=if ΩR∈R −2ΩR

Ω sin(Ωt/2) cos(Ωt/2)

Vz ≡ ρ22 − ρ11 (35c)

=(34) |ΩR|2 − δ2

Ω2 sin2(Ωt/2)− cos2(Ωt/2) .

From now on until the end of this article, we assume that indeed

ΩR ∈ R . (36)

Then the time derivatives of the Bloch vector’s components get
the simple form

V̇x = −2ΩRδ

Ω sin(Ωt/2) cos(Ωt/2) = δVy (37a)

V̇y = −ΩR

(
cos2(Ωt/2)− sin2(Ωt/2)

)
= ΩRVz − δVx (37b)

V̇z = Ω2
R − δ2

Ω sin(Ωt/2) cos(Ωt/2) + Ω cos(Ωt/2) sin(Ωt/2) =

= 2Ω2
R

Ω cos(Ωt/2) sin(Ωt/2) = −ΩRVy . (37c)
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Defining the frequency vector

F ≡ (Fx, Fy, Fz) ≡ (−ΩR, 0,−δ) , (38)

the relations (37) can be written in compact form as a vector
product:

V̇ = F × V (39)

This equation resembles the dynamic equation

Ṁ = γB ×M

of the magnetic momentM with gyromagnetic factor γ in the con-
stant magnetic field B. Equations (39) resp. (37) were introduced
by Felix Bloch in 1946 [1].
It is obvious from (35) and (39),
∗ that V (t = 0) = (0, 0,−1). This is reflecting our standard

boundary condition (17), according to which the 2-level system
is prepared at time t = 0 in the state |1〉.

∗ that the modulus of the Bloch vector V is constant, and on
the surface of a sphere with radius |V | = 1 at any time. This
sphere is called the Bloch sphere. Note that this conclusion is
valid only under the precondition, that transitions |2〉 → |1〉
happen exclusively due to stimulated emission of radiation,
but not due to spontaneous emission, nor due to radiation-
less relaxation mechanisms. In section 3 we will drop that
precondition.

∗ that the Bloch vector V is oscillating with frequency |F | on a
cone around the vector F .

In accord with (23) and (27) we define

Ta ≡
a

Ω = a√
|ΩR|2 + δ2 , a ∈ R . (40)
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Figure 1 displays the Bloch vector’s position on the Bloch sphere
at different times. The coordinate system is sketched on the left
side.

x

x x x

z z z

x
y

z

y y y

OaO ObO OcO
F a

F b

F c

F a

F a

F b

F b

F c

F c

llllllV (Tπ)

lllllllV (T0)

lllllllV (Tπ/2)

lllllllV (T3π/2)

lllllV (Tπ)

lllllllV (T0)

lllllllV (Tπ/2)

lllllllV (T3π/2)

V (Tπ)
lllllllV (T0)

lllllllV (Tπ/2)

llV (T3π/2)

Fig. 1 : The Bloch sphere

The frequency vector F (38)= (−ΩR, 0,−δ) in any case is in the xz-
plane. The x components of the three example vectors F a, F b, F c

are identical, namely −ΩR. In the case of F a, the detuning
δ (1)= ω − (ω2 − ω1) of the exciting field versus the system’s res-
onance frequency is zero, in the case of F b the detuning is small,
and in the case of F c it is large. Due to our boundary condition
(17), in any case V (T0) = (0, 0,−1).

When the system is irradiated, V is rotating on a cone, whose
axis is defined by F . In case OaO the cone’s angle is 180°, i. e. the
cone is degenerated to a plane. In the cases ObO and OcO we have
δ > 0, and the cone’s angle is smaller than 180°. In case of δ < 0
(there is no example for this case in fig. 1), then the cone’s angle is
larger than 180°.

At time t = Tπ/2, the Bloch vector V is in the plane spanned by
the y-axis and the vector F , see the three bottom sketches. Only if
δ = 0, this plane is identical to the xy-plane. At time t = Tπ, the
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vector V is again in the xz-plane, and Vz reaches it’s maximum
value, which is larger than zero in case of |δ| < ΩR, but smaller
than zero in case of |δ| > ΩR. Only if Vz > 0, the amplitude of |2〉
is larger than the amplitude of |1〉.

At time t = T3π/2 the vector V is again in the plane spanned by
the y-axis and F . Eventually at time t = T2π the initial state is
reached again, V (T2π) = V (T0), the amplitude of |2〉 is zero, and
the next cycle starts.

3. The incoherent 2-level system

Thus far we assumed that transitions |2〉 → |1〉 are caused exclu-
sively by stimulated emission of radiation. But actually there exist
alternatives: The energy of the excited state |2〉 can for example
be dissipated due to spontaneous emission of radiation, or due to
excitation of vibrations, or due to collisions with other systems. We
introduce these additional relaxation channels phenomenologically
into our model due to the insertion of relaxation times 0 < Ti <∞
with i = 1 or i = 2 into the time derivative of the density matrix:

ρ̇11 = ˙(34a) + ρ22
T1

(41a)

ρ̇22 = ˙(34b)− ρ22
T1

(41b)

ρ̇21 = ˙(34c)− ρ21
T2

(41c)

ρ̇12 = ˙(34d)− ρ12
T2

(41d)

The relaxation time T1 is describing, how fast the state |2〉 decays
due to spontaneous emission of radiation and other mechanisms, in
addition to stimulated emission described by ˙(34b). The relaxation
time T2 is describing, how fast the system’s coherence gets lost due
to spontaneous emission and other mechanisms, and thus the pure
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state becomes a mixture. When the model is fitted to experiments,
typically T2 ' 2T1 is found.
With (41) the time derivative of the Bloch vector becomes

V̇x =(37a)
δVy −

ρ21
T2

eiωt − ρ12
T2

e−iωt
(35)= δVy −

Vx
T2

(42a)

V̇y =(37b) ΩRVz − δVx + i
ρ21
T2

eiωt − i ρ12
T2

e−iωt =

=(35) ΩRVz − δVx −
Vy
T2

(42b)

V̇z =(37c) −ΩRVy −
2ρ22
T1

(35)= −ΩRVy −
Vz + 1
T1

. (42c)

Due to the additional terms versus (37), V̇ can’t any more be
described by a vector product like (39). And we now are going
to demonstrate, that the Bloch vector does not oscillate forever
any more, but converges to a value with constant components and
modulus 0 < |V | < 1. Using the definition

Ṽi(t) ≡
t∫

τ=0

dτ Vi(τ) with i = x, y, z , (43)

we integrate (42) over time:

Vx(t)− Vx(t = 0)︸ ︷︷ ︸
0

= δṼy(t)−
Ṽx(t)
T2

(44a)

Vy(t)− Vy(t = 0)︸ ︷︷ ︸
0

= ΩRṼz(t)− δṼx(t)− Ṽy(t)
T2

(44b)

Vz(t)− Vz(t = 0)︸ ︷︷ ︸
−1

= −ΩRṼy(t)−
Ṽz(t) + t

T1
(44c)
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From the first two equations we get

Ṽx = −VxT2 + δT2Ṽy (45a)

Ṽx = −Vy
δ

+ ΩR

δ
Ṽz −

Ṽy
δT2

(45b)

Ṽy = δT 2
2 Vx

δ2T 2
2 + 1 −

T2Vy
δ2T 2

2 + 1 + ΩRT2
δ2T 2

2 + 1 Ṽz . (45c)

Insertion of (45c) into (44c) gives

Vz = −1− δΩRT
2
2 Vx

δ2T 2
2 + 1 + ΩRT2Vy

δ2T 2
2 + 1 −

− Ω2
RT2

δ2T 2
2 + 1 Ṽz −

Ṽz
T1
− t

T1

Ṽz = − δ2T1T
2
2 + T1

Ω2
RT1T2 + δ2T 2

2 + 1 Vz −
δ2T1T

2
2 + T1

Ω2
RT1T2 + δ2T 2

2 + 1 −

− δ2T1T
2
2 + T1

Ω2
RT1T2 + δ2T 2

2 + 1
δΩRT

2
2 Vx

δ2T 2
2 + 1 +

+ δ2T1T
2
2 + T1

Ω2
RT1T2 + δ2T 2

2 + 1
ΩRT2Vy
δ2T 2

2 + 1 −
δ2T 2

2 + 1
Ω2
RT1T2 + δ2T 2

2 + 1 t .

For sufficiently large t, all other terms become negligible versus
the last:

Ṽz(t→∞) = − δ2T 2
2 + 1

Ω2
RT1T2 + δ2T 2

2 + 1 t (46a)

This is inserted into (45c):

Ṽy(t→∞) = − ΩRT2
Ω2
RT1T2 + δ2T 2

2 + 1 t (46b)
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Insertion into (45a) eventually gives

Ṽx(t→∞) = − δΩRT
2
2

Ω2
RT1T2 + δ2T 2

2 + 1 t . (46c)

Thus the Bloch vector doesn’t oscillate any more for large t, but
converges to the stationary state

Vx(t→∞) = − δΩRT
2
2

Ω2
RT1T2 + δ2T 2

2 + 1 (47a)

Vy(t→∞) = − ΩRT2
Ω2
RT1T2 + δ2T 2

2 + 1 (47b)

Vz(t→∞) = − δ2T 2
2 + 1

Ω2
RT1T2 + δ2T 2

2 + 1 . (47c)

−1 < Vz(t→∞) < 0 according to the last equation. Thus in the
steady state (t→∞), the probability for the system to be in state
|2〉 is smaller than 0.5 in any case, even if δ = 0, no matter how
large the power of the radiation field may be. The Bloch vector’s
modulus in the steady state is

|V |(t→∞) =

=
√

T2Ω2
RT2(δ2T 2

2 + 1) + (δ2T 2
2 + 1)2

Ω4
RT

2
1 T

2
2 + 2T1Ω2

RT2(δ2T 2
2 + 1) + (δ2T 2

2 + 1)2 < 1 . (48)

Using the common estimate T2 ' 2T1, we see that |V |(t→∞) < 1,
and that the impact of the value of δ onto the value of |V |(t→∞)
is marginal.

4. Ramsey fringes

“The second is the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels of
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the ground state of the 133Cs atom.” This is the definition of the
second, as internationally agreed upon since 1967 . In Germany,
it is the task of the Physikalisch-Technische Bundesanstalt in
Braunschweig, to measure the second according to this definition,
and provide it to the public.
For this purpose, the PTB lets a beam of 133Cs atoms interact

with a micro-wave field, whose frequency is determined by a voltage-
controlled oscillator (VCO). At the start, the frequency of the VCO
is adjusted to approximately 9.192 631GHz. Thereby the atoms
are oscillating between the state |1〉 (this is the sub-level Fg =3 of
the ground state) and the state |2〉 (this is the sub-level Fg =4 of
the ground state). The occupation numbers of the two states are

ρ11 =(34a) cos2(Ωt/2) + δ2

|ΩR|2 + δ2 sin2(Ωt/2) (49a)

ρ22 =(34b) |ΩR|2

|ΩR|2 + δ2 sin2(Ωt/2) . (49b)

Only if δ = 0, ρ11 can reach the value 0, and ρ22 can reach the
value 1. If δ 6= 0, ρ11 > 0 and ρ22 < 1 at any time. Hence it
would be sufficient “simply” to measure the amplitude of the Rabi-
oscillations (49) and adjust the voltage-controlled oscillator such,
that the amplitude becomes maximal. Then δ = 0, we multiply
the inverse of the oscillator frequency by 9 192 631 770, and have
realized the second. In principle.
The disadvantage of this method is, that small deviations from

the amplitude’s maximum can not be observed very precisely,
and hence the frequency with δ = 0 can not be determined very
accurately. In 1949, Norman Ramsey (1915 – 2011) suggested a
better method [2]. The atomic clock “CS2” of the PTB has been
built according to Ramsey’s proposal as sketched in fig. 2 on the
next page:
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Cs133

VCOother states
magnetic field magnetic field

|1〉
oven

29mm 29mm
770mm

|2〉

|1〉
detector

Fig. 2 : The clock „CS2“ of the PTB

In a vacuum chamber, which is shielded against external magnetic
fields, 133Cs atoms are evaporated from an oven. An inhomogeneous
magnetic field selects those atoms, which are in state |1〉 (this is
the level Fg =3 of the ground state).

There are about 1.3 · 107 atoms per second in this beam, which
are moving with a velocity of about 95m/s through the apparatus.
They cross a waveguide of 29mm width, in which they are excited
by a microwave field of about 9.192 631GHz. The microwave
frequency is regulated and varied by means of a voltage-controlled
oscillator (VCO). The intensity of the microwave field is adjusted
such that the atoms, when crossing the waveguide, just are subject
to a π/2-pulse.
Subsequently the atoms move during the time interval

T = 770mm
95m/s ≈ 8.1 · 10−3 s (50)

with no external field through the apparatus. Then they cross the
waveguide again, hence are again subject to a π/2-pulse.

Eventually those atoms, which are excited into state |2〉, are
separated from those atoms which are in state |1〉 by means of
another inhomogeneous magnetic field. The atoms in state |1〉 are
ionized by a hot wire, and then electrically detected.
Naively one might guess, that the two π/2-pulses in total have

the same effect as one π-pulse. This guess is wrong, however,
because the time T = (50) between the two π/2-pulses, during
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which the atoms are moving free of external fields, basically changes
the situation. For a detailed analysis, we start from the equations

V̇x
(42)= δVy −

Vx
T2

(51a)

V̇y
(42)= ΩRVz − δVx −

Vy
T2

(51b)

V̇z
(42)= −ΩRVy −

Vz + 1
T1

. (51c)

The setup is dimensioned such that

T = (50)� T1 T � T2 (52a)

and hence a fortiori

Tπ/2 � T1 Tπ/2 � T2 . (52b)

Therefore the last terms each in the three lines of (51) are negligible
in good approximation. Furthermore the π/2-pulses

Tπ/2
(23)= π/2√

|ΩR|2 + δ2

are so strong, that

|ΩR|2 � δ2 . (52c)

We define a separate time scale for each single atom as follows:
At time t = −Tπ/2 the atom first time enters the waveguide, and
leaves it again at time t = T0 = 0. When the atom enters the
waveguide, it’s Bloch is

V (−Tπ/2) = (0, 0,−1) . (53)
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When the atom leaves the waveguide, it’s Bloch vector is under
the three presuppositions (51) in good approximation

V (T0) ≈ (0,−1, 0) , (54)

as sketched in fig. 3OaO and 3ObO on page 24 . Subsequently (in the
time interval from t = T0 = 0 to t = T ) the Bloch vector evolves
according to (51):

V̇x = δVy −
Vx
T2

(52)
≈ δVy (55a)

V̇y = −δVx −
Vy
T2

(52)
≈ −δVx (55b)

V̇z = −Vz + 1
T1

(52)
≈ 0 . (55c)

It is certainly plausible, that outside the radiation field all terms
∼ ΩR have been skipped from the Bloch vector. But it might be
somewhat disturbing, that the terms ∼ δ have been kept. Can we
reasonably speak of the detuning δ, while there is no radiation
which is detuned versus the atom’s resonance frequency ω2 − ω1?

At this point we must recall the Bloch vector’s definition (35):

Vx ≡ ρ21e
iωt + ρ12e

−iωt (56a)
Vy ≡ iρ21e

iωt − iρ12e
−iωt (56b)

Vz ≡ ρ22 − ρ11 (56c)
ω ≡ ω2 − ω1 + δ

Due to the factors e±iωt there is an implicit dependence of Vx and
Vy on δ, no matter whether the atom is subject to irradiation, or not.
The Bloch vector does not describe the Cesium atom alone, but the
total system atom& radiation. If we would describe the atoms and
the radiation field by the methods of quantum field theory, then
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the state functions of the atoms and photons would get entangled
due to the π/2-pulse. The entanglement persists when the atoms
leave the waveguide. It ends only when the entangled system is
subjected to a measurement. In Bloch’s semiclassical formalism,
the entanglement is represented by the implicit dependence of V
on ω. Therefore it is reasonable, and consistent with our model,
to keep the factor δ in (55) even if the atoms don’t interact with
the radiation field for some time. In contrast, the Rabi-frequency

ΩR
(5)= 1

~
〈2|dÊ|1〉 = 1

~

(
〈1|dÊ|2〉

)∗
(57)

is clearly zero if the field E is zero at the position of the 2-level
system, and thus has been correctly removed from (55).
Because of (52), |V | is in good approximation 1 at any time,

and V is rotating during the time interval 0 ≤ t ≤ T in the xy-
plane with frequency δ around the z-axis.

0 ≤ t ≤ T :
Vx(t) ≈ − sin(δt) Vx(t = 0) = 0 (58a)
Vy(t) ≈ − cos(δt) Vy(t = 0) ≈ −1 (58b)
Vz(t) ≈ 0 (58c)

In fig. 3OcO and 3OeO, two arbitrary situations with different δ > 0
are sketched. In case δ < 0 (there is no example for this case in
fig. 3) the Bloch vector is rotating in reverse direction around the
z-axis, and in case δ = 0 it is constantly V ≈ (0,−1, 0).

The total rotation angle of V in the time interval T between the
two pulses is

−δT = −α− n · 2π , n = 0, 1, 2, 3, . . . (59)
0 ≤ α < 2π .
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In the time interval T ≤ t ≤ T + Tπ/2, the Cesium atom is again
subjected a π/2-pulse. This pulse rotates V from the xy-plane into
the xz-plane, see fig. 3OdO and 3OfO. (Both are only approximations.
If δ 6= 0, then V is before the pulse not exactly, but almost, in the
xy-plane. And it is after the pulse not exactly, but almost, in the
xz-plane.) After this pulse, in good approximation

Vz
(35)
≡ ρ22 − ρ11 ≈ cos(α) . (60)

Thus in case α = 0 the occupation probability of the state |2〉 is
one, and the occupation probability of the state |1〉 is zero. In
case α = π the occupation probability of state |2〉 is zero, and the
occupation probability of state |1〉 is one.
In the time interval between t = T + Tπ/2 and the detection,

Vz
(35)= ρ22 − ρ11 doesn’t vary any more (in contrast to Vx and Vy).

Hence the length of the time interval between t = T +Tπ/2 and the
detection is of no relevance with regard to the measurement result,
provided that this time interval is very small versus T1 and T2.
In fig. 4, which is taken from [3], the measurement results are

x

y

z

F

V (−Tπ/2)

OaO x

y

lllllllV (T0)
ObO x

y

llllllV (T ) OcO

x

y
llllllV (T )

OeO

x

z

llllllllllllV (T + Tπ/2)
OdO

x

z

llllllV (T + Tπ/2)

OfO

Fig. 3 : Der Bloch vector in Ramsey’s method
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ρ11

δ/kHz

Fig. 4 : Ramsey fringes, observed with the clock “CS2” of the PTB (graph
taken from [3])

displayed as function of δ. In the insert, the central fringes are
displayed with enlarged frequency axis. As the clock “CS2” of
the PTB measures ρ11 (but not ρ22), the graph has at perfect
resonance (δ = 0) a minimum.
The advantage of Ramsey’s method is clearly visible from this

graph: The position of δ = 0 can be read from the graph easily
with an accuracy of about ±10Hz. If instead of the two π/2-pulses
one single π-pulse would be applied (i. e. if T would be zero), then
one would observe the curve indicated in green color, from which
the position of δ = 0 could be read only with an accuracy of about
±100Hz. Thus Ramsey’s method increases the clock’s accuracy by
about a factor 10 .
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Ramsey-interferences are quite special. In other interference
experiments, light waves are interfering with light waves (resp. a
photon is interfering with itself), or an electron wave is interfering
with an electron wave (resp. an electron is interfering with itself),
or a molecule wave is interfering with a molecule wave (resp. a
molecule is interfering with itself). In contrast, fig. 4 shows the
interference of a matter field (the Cesium atoms) and the electro-
magnetic radiation field. With the first π/2-pulse a well-defined
phase relation between each Cesium atom and the radiation field is
established. Subsequently the phase of the Cesium atoms evolves
according to

|ψ〉 =(28a)
√

1
2
[(
C1e

−iω1t|1〉+ C2e
−iω2t|2〉

]
=
√

1
2
[(
C1e

+i(ω2−2ω1)t|1〉+ C2e
+iω1t|2〉

]
· e−i(ω2−ω1)t (61)

C1 ≡
(

1− iδ

Ω
)
ei(ζ+δTπ/2/2)

C2 ≡
iΩR

Ω ei(ζ−δTπ/2/2) .

Note that C1 and C2 are constants. The exponential functions
within the square brackets are oscillating very rapidly as com-
pared to e−i(ω2−ω1)t, and hence are merely “noise” with regard to
the interference with the electromagnetic radiation oscillating at
frequency ω ≈ ω2 − ω1 .

At the same time, the phase of the radiation field evolves accord-
ing to

Ê
(3)= Ê cos(−ωt) (62)

ω
(1)= ω2 − ω1 + δ .

After the time T , when the atoms and the radiation meet again,
the phase difference between (61) and (62) has added up to −δT ,
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disregarding the “noise” within the square brackets of (61). Due
to this phase difference we see in fig. 4 not the wide green curve,
but the acute interference fringes, called Ramsey fringes.
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