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Evanescent Electromagnetic Fields
Evanescent fields can be observed, when electromagnetic fields, im-
pinging onto the surface of an optically thinner medium, are totally
reflected into the optically thicker medium (total internal reflection).
The evanescent fields are penetrating into the thinner medium with
exponentially decreasing intensity. It will be demonstrated in this
circular that a complete description of the evanescent fields can
be achieved within the framework of Maxwell’s theory. No “new
physics” are required. Furthermore Snellius’ law of refraction, the
Fresnel-coefficients, and the phase shifts of all fields for arbitrary
under- and overcritical angles of incidence will be derived. Us-
ing the Stokes relations, explicit formulas for the frustrated total
internal reflection (FTIR) are computed.
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1. Introduction

When electromagnetic radiation, coming in from a transparent
medium with refractive index na, is impinging under the angle ϑe
onto the plain surface of another medium with refractive index nb,
then it will in general be partly refracted under the angle ϑb into
the medium b, and partly reflected under the angle ϑr into the
medium a, see fig. 1.

Snellius’ law of refraction, which is stating the relation between
the angles and the refractive indices, is well-known since the early
17th century:

ϑr = ϑe (1a)
na sinϑe = nb sinϑb (1b)

Two centuries later, Fresnel presented precise formulas for the
amplitudes of the refracted and the reflected radiation. In sections 3
and 4 we will derive both Snellius’ law of refraction and Fresnel’s
formulas from Maxwell’s equations.

Real solutions of Snellius’ law of refraction are existing only for
na
nb

sinϑe = sinϑb ≤ 1 . (2)
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Fig. 1 : Angles and coordinates
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If na > nb, then this condition is not met for sufficiently large
incoming angles ϑe < π/2. The angle

ϑe,critical = arcsin
(nb
na

)
(3)

is called the critical angle. If radiation is coming in under an angle
ϑe > ϑe,critical, then — according to experience — it is reflected
totally back into the medium a.
Surprisingly, even in case of over-critical incoming angles, the

electromagnetic fields in medium b are not zero. Instead their
intensity is decreasing only exponentially with the distance from
the boundary surface. These exponentially decreasing fields in
medium b are called “evanescent fields”. Experimental evidence for
the existence of evanescent fields will be presented in section 2.
From fig. 1 one can read kb,y = kb cosϑb. That sketch, however,

is a description of the case of under-critical incoming angles only.
It’s impossible to display the angle ϑb in a similar sketch for the
case ϑe > ϑe,critical. The derivations of the theoretical description
of evanescent fields in the two leading textbooks on classical optics
and electrodynamics, namely Born and Wolf [1], and Jackson [2],
and — following them — the derivations in all other textbooks
known to me are — without proof! — based on the assumption,
that both the relation kb,y = kb cosϑb and the law of refraction (1b)
are valid for over-critical incoming angles as well. Then, because
of sinϑb > 1, the angle ϑb ∈ C must be complex, and consequently
kb,y must be complex.

While the law of refraction for under-critical incoming angles is
derived from Maxwell’s equations, the complex angles of refraction
are introduced at this point in the literature ad-hoc and with no
theoretical justification, and therefore are quite mysterious. The
results are of cause confirmed by experimental observations, but it
is remaining unclear whether the theory of evanescent fields can
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be completely accomplished within the framework of Maxwell’s
electrodynamics, or whether at some point “new physics” are
required.
To me it seems much more “natural”, first to prove that the

ansatz

E(t, r) = Êei(k·r−ωt+ϕE) (4a)
B(t, r) = B̂ei(k·r−ωt+ϕB) (4b)

can describe both plain waves and evanescent fields, provided that
the wave-vector k may be complex. Then one can in a second
step introduce complex angles, to achieve a most simple formalism.
But the complex angles are not essential for our description; only
the complex wave-vectors are indispensable. Waves with complex
wave-vectors are well known as exponentially damped waves, and
can easily be visualized — in contrast to complex angles.

2. Observations of evanescent fields

If an electromagnetic wave, coming in from an optically thicker
medium a, is impinging under the angle ϑe > ϑe,critical onto the
surface of an optically thinner medium b, then it is totally reflected.
Still that wave penetrates a little bit (quantitative statements will
follow immediately) into the medium b, before it returns into the
medium a. This fact is proofed mainly by two types of observations:
The “frustrated total internal reflection”(FTIR), and the Goos-
Hänchen shift.

FTIR is known since centuries, already Newton mentioned it in
the “Opticks” [3, SecondBook, Part I, Observation 1]. To observe
FTIR, often an experimental setup as displayed in the left sketch
of fig. 2 on the following page is used. An electromagnetic wave is
impinging under an angle of 45° from inside onto the hypotenuse
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Fig. 2 : Frustrated total internal reflection

of an isosceles prism. The wave is totally reflected, if na > nb and
ϑe,critical < 45°. But if a second prism is placed at a distance of less
than approximately one wavelength between the two hypotenuses,
then a small part of the incoming power can be detected as a
transmitted wave with wave-number kb = ke at the opposite side
of the apparatus.

A modern experiment of Meixner et. al. [4] for the observation of
this effect is sketched in the middle picture of fig. 2. The incoming
electromagnetic wave is the radiation of an argon laser (wavelength
514.5 nm in air). The material b is air (nb = 1.000), and the prism
is made of a glass with na = 1.520. The surface of one side of the
prism is coated by a reflecting metal. Thus a standing wave evolves
in the prism. The distance K from knot to knot of the standing
wave along the hypotenuse is

K = 1
2 ·

514.5 nm
1.520 · sin 45° = 239.3 nm . (5)

The second prism is replaced by a glass-fiber wave-guide, whose
tip (effective aperture about 80 nm) is moved along the x-axis at
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the distance y from the prism’s hypotenuse. The optical power
coupled into the detector has been displayed by Meixner et. al. [4]
as a function of x and y in the diagram reprinted on the right side
of fig. 2. The distance 239 nm in x-direction between the knots of
the standing wave is easily discernible. The observed reduction of
the detected power I in y-direction can be approximated [4] by

I = I0e
−2y/γ with γ = 207.8nm± 0.6nm . (6)

Will the totally reflected wave still penetrate into the medium b
and create an evanescent field, if there is no prism and no other
detector, which could verify the evanescent field? The exploration
of quantum phenomena in the twentieth century has taught us that
this question is not trivial. There exists an effect, however, namely
the Goos-Hänchen shift, which is suggesting the answer “yes”.

na
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Fig. 3 : Goos-Hänchen shift

Goos and Hänchen [5, 6] performed their experiment in multiple
variants. One of the variants is sketched in fig. 3 : A bundle of
light, whose cross-section is about B ≈ 0.3mm, is coupled into a
prism, and after about 60 to 70 total reflections eventually coupled
out at the opposite side of the prism. In the middle of the prism’s



Astrophysical Institute Neunhof
Circular se91013, December 2014 7
top and bottom sides, reflecting silver layers are applied. At each
reflection, the radiation bundle penetrates a little bit into the
optically thinner medium b, before it returns into the medium
a. Only at the silver stripes the radiation bundle is reflected
immediately, without intruding into the medium b. Thereby that
part of the light-bundle, which is reflected by medium b (continuous
line in the sketch), is shifted upon each reflection a little bit in x-
direction versus that part of the light-bundle, which is reflected by
the silver stripe (dotted line in the sketch).
The effect is displayed in the sketch highly exaggerated. Goos

and Hänchen worked with the green line of a mercury lamp, and
observed after sixty to seventy reflections shifts of aboutD = 50µm
to D = 100µm, i. e. about one third of the width B ≈ 0.3mm of
the light-bundle. D does depend sensitively on the incoming angle
ϑe, and is largest if ϑe is only slightly larger than ϑe,critical.

3. Law of refraction, and critical angle

Starting point for all theoretical considerations in this article are
Maxwell’s equations

∇× E = −Ḃ (7a)
∇×H =  + Ḋ (7b)
∇ ·D = ρ (7c)
∇ ·B = 0 (7d)

and the material equations
D = ε0E + P = εE with ε = εrε0 (7e)
H = B/µ0 −M = B/µ with µ = µrµ0 . (7f)

We emphasize
E∈R, B∈R, H∈R, D∈R, ∈R, ρ∈R, ε0∈R, µ0∈R , (7g)
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i. e. all components of the three-dimensional field-strengths always
are real in Maxwell’s theory.
As we are assuming both media to be isotropic, the relative

dielectric constants εr,a and εr,b, and the relative magnetic per-
meabilities µr,a and µr,b, can be described by numbers, and don’t
need to be represented by 3× 3-component tensors. Furthermore
we assume both media, and the boundary surface between them,
to be free of macroscopic charges and current densities:

ρ = 0 ,  = 0 (7h)

This assumption implies that both media are good electrical isola-
tors, in which no macroscopic currents are induced by the electro-
magnetic waves.
In the sequel we will use for vectors F the notation

F ≡ uxFx︸ ︷︷ ︸
≡ F x

+ uyFy︸ ︷︷ ︸
≡ F y

+ uzFz︸ ︷︷ ︸
≡ F z

≡ uxFx + uzFz︸ ︷︷ ︸
≡ F xz

+ uyFy︸ ︷︷ ︸
≡ F y

(8)

F ≡ |F | , Fxz ≡ |F xz| , (9)

with ux, uy, and uz being unit vectors in the directions of the three
cartesian coordinates. The electric and magnetic fields can thereby
be described as the sum of fields F xz in the plane of the boundary
surface between the two media, and the fields F y perpendicular to
that plane. Alternatively, we will often sub-divide the fields into
fields F xy, which are polarized in the plane spanned by the wave-
vectors k, and the fields F z, which are polarized perpendicular to
that plane.
Note that the thin printed moduli F and Fxz with zero or two

indices always are ≥ 0, while the thin printed vector components
with exactly one component-index (like e. g. Fx) may be greater,
or equal, or less than zero.
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Fig. 4 : The surface A of integration

We integrate the Maxwell-equations (7a) and (7b) over the red-
hatched area A depicted in fig. 4 . The corner points of A are
A1, A2, A3, A4, and it’s normal unit vector is uA = uz.∫

A

duz · (∇× E) =
∮
A

dlA·Exy = −
∫
A

duz · Ḃz (10a)

∫
A

duz · (∇×H) =
∮
A

dlA·Hxy =
∫
A

duz · Ḋz (10b)

By means of Stokes’ theorem, the surface integrals over the rota-
tion have been converted into path integrals along the surface’s
boundary lA. Furthermore we have considered that only certain
components of the vectors are contributing to the integral due to
multiplication by the differentials duz resp. dlA.

Now the area A is vertically shrunk such that the points A1 and
A2 become situated infinitesimal close to the boundary surface in
medium a, and the points A3 and A4 infinitesimal close to that
surface in medium b. Thereby the integrals over Ḃ and Ḋ become
zero, because the area A becomes infinitesimal small. The path
integrals from A2 to A3 and from A4 to A1 disappear as well. We
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choose the distances from A1 to A2 and from A3 to A4 finite, but
so small that the fields don’t change appreciably along the way
from A1 to A2 resp. from A3 to A4. This leads to the following
integrals:

A2∫
A1

dlA ·Ex +
A4∫
A3

dlA·Ex = 0 ≈

≈ Ex(y = −0) ·A2A1 − Ex(y = +0) ·A3A4 (11a)
A2∫
A1

dlA ·Hx +
A4∫
A3

dlA·Hx = 0 ≈

≈ Hx(y = −0) ·A2A1 −Hx(y = +0) ·A3A4 (11b)

There is a negative sign for the path from A3 to A4, because the
integration along that path is done in direction opposite to the x-
coordinate. Using

A2A1 = A3A4 , (12)

we get

Ea,x = Eb,x , Ha,x = Hb,x , (13a)

with Ea resp. Ha being the fields in material a, and Eb resp. Hb

being the fields in material b.
Next we want to demonstrate that similar equations hold for

Ez and Hz. For that purpose the area A in figure 4 is rotated by
π/2 around the y-axis, such that the normal vector of the area
is pointing into x-direction. Thereby one gets instead of (11) the
equations

−Ez(y = −0) ·A2A1 + Ez(y = +0) ·A3A4 = 0
−Hz(y = −0) ·A2A1 +Hz(y = +0) ·A3A4 = 0 ,
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because now the path integrals are running parallel to the z-axis
in medium b, but antiparallel to the z-axis in medium a. With
A2A1 = A3A4 we get

Ea,z = Eb,z , Ha,z = Hb,z . (13b)

The physical meaning of equations (13a) and (13b) is obvious:
Those components of the fields E and H, which are tangential to
the boundary surface between the two media, are continuous at
the boundary surface.
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Fig. 5 : The integration volume V

Now we integrate Maxwell’s equations (7c) and (7d) over the
volume V with corner points A1 through A8, which is sketched in
figure 5 . The boundary surface between the media is indicated
in blue. Points A1, A2, A6, A5 are below that surface in medium
a, points A4, A3, A7, A8 are above it in medium b. If the volume’s
y-components are chosen infinitesimal small, and it’s x- and z-
components are chosen finite, but so small that the fields don’t
change significantly on the integration surfaces, then one gets with
(7h), and by means of Gauß’ theorem,
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0 (7c)=
∫
V

dV ∇ ·D =
∫

O(V )

df ·D = A7A8 ·A3A7 ·

·
(
Db,y(y = +0)−Da,y(y = −0)

)
.

Thus at the boundary surface

Da,y = Db,y (13c)

holds. By the same method, from (7d)

Ba,y = Bb,y (13d)

is derived. The equations (13) are indicating that those components
of E and H which are tangential to the boundary surface, and
those components of D and B which are perpendicular to the
boundary surface, are continuous at the boundary surface.
In the sequel, we will mark incoming fields in the medium a by

the index e, reflected fields in the medium a by the index r, and
fields in the medium b by the index b. Furthermore we define a
right-handed system of cartesian coordinates x, y, z as depicted in
fig. 1 on page 2: The boundary surface between the media a and
b is the xz plane (y = 0), i. e. the positive y-axis is perpendicular
to the boundary surface, and is pointing into the medium b. The
coordinate system is rotated around the y-axis such that the wave-
vector of the incoming wave is in the xy plane (ke,z = 0), and that
ke,x ≥ 0 holds.
As we are assuming both media a and b to be isotropic, the

z-components of the wave-vectors of the reflected fields and the
fields in medium b must as well be zero (kr,z = kb,z = 0) for
symmetry reasons, because the arguments for kr,z > 0 wouldn’t be
better or worse in isotropic media than the arguments for kr,z < 0.
Corresponding considerations hold for kb,z:

ke,z = kr,z = kb,z = 0 (14)
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In (19) we will formally define the notion “plane wave”. If the

incoming fields are plane waves, then — according to experience
— all fields in both media can be described completely by those
solutions of Maxwell’s equations, which have the form

E(t, r) = Êei(k·r−ωt+ϕE) (15a)
B(t, r) = B̂ei(k·r−ωt+ϕB) , (15b)

even in case of over-critical incoming angles, provided that we allow
that the y-component of the wave-vector may be complex:

k = uxkx + uyky with kx ∈ R, ky ∈ C, kz
(14)= 0 (15c)

t is the time, r the location in three-dimensional space, ω is a
frequency, ϕ is a constant phase angle.
The fields of course must be real, see (7g). Therefore equations

(15a) and (15b) are to be interpreted as

E = Re
[
Êei(k·r−ωt+ϕE)

]
= Ê cos(k · r − ωt+ ϕE) (16a)

B = Re
[
B̂ei(k·r−ωt+ϕB)

]
= B̂ cos(k · r − ωt+ ϕB) . (16b)

Only for convenience we skip in most of our formulas the explicit
notation Re[. . .] .

For the reminder of this article we will exclusively consider fields
of the form (15), and statements like “all fields have this or that
property” are to be understood as “all fields of the form (15) have
this or that property”.
Insertion of (15) and (7h) into Maxwell’s equations (7a) and

(7b) results into
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∇× E = ux
(∂Ez
∂y
− ∂Ey

∂z

)
+ uy

(∂Ex
∂z
− ∂Ez

∂x

)
+

+ uz
(∂Ey
∂x
− ∂Ex

∂y

)
= iux(kyEz − kzEy) +

+ iuy(kzEx − kxEz) + iuz(kxEy − kyEx) =
= ik × E = −Ḃ = +iωB (17a)

∇×H = ik ×H = −iωD . (17b)

The wave-vectors and field-vectors thus meet the conditions

k × E = ωB (18a)
k ×B = µk ×H = −ωµD = −ωεµE . (18b)

Electromagnetic fields are called “plane waves”, if they have the
form (15) and if ky is real:

p. w. ≡ plane wave ⇐⇒
⇐⇒ k ∈ R ⇐⇒ kx ∈ R, ky ∈ R, kz ∈ R (19)

In case of plain waves, according to (18)

p. w. : k ⊥ E ⊥ B ⊥ k , (20)

with the three vectors k,E,B according to (18a) forming a right-
handed system.

If in a plane wave E(t, r) = 0, then according to (18a) B(t, r) =
0. Thus for the phase factors

p. w. : ϕE = ϕB or ϕE = ϕB + π (21)

must hold. For the moduli, in case of a plane wave

p.w. : E = ω

k
B = c

n
B = 1

√
εµ
B (22)

holds, with the
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index of refraction: n = √εrµr (23)

and the

velocity of light in vacuum: c = 1
√
ε0µ0

. (24)

We exclusively consider “conventional” materials with the proper-
ties

εr > 0 , µr > 0 , n > 0 , (25)

and ignore the “modified” materials with negative index of refrac-
tion, which are known since 2001.
By taking the derivatives of Maxwell’s equations (7a) and (7b)

with respect to time, inserting them mutually, and considering
(7h), we get the wave-equations

∇×∇× E = −εµË (26a)
∇×∇×B = −εµB̈ . (26b)

As the equations for the magnetic field and the electric field are
formally identical, we only consider the electric field. For fields of
the form (15), we get

∇×∇× E =

= −ux
(
ky(kxEy − kyEx)− kz(kzEx − kxEz)

)
−

− uy
(
kz(kyEz − kzEy)− kx(kxEy − kyEx)

)
−

− uz
(
kx(kzEx − kxEz)− ky(kyEz − kzEy)

)
=

= −k × k × E = +ω2εµE (27a)
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Due to kz(14)= 0, these equations simplify significantly:

−kxkyEy + k2
yEx = ω2εµEx (28a)

k2
xEy − kxkyEx = ω2εµEy (28b)
k2
xEz + k2

yEz = ω2εµEz (28c)

As always ω2εµ 6= 0, we get from the first and the second equation

if ky = 0 : Ex = 0 and k2
xEy = ω2εµEy

if kx = 0 : Ey = 0 and k2
yEx = ω2εµEx

if kx 6= 0 and ky 6= 0 :
(k2
x + k2

y)Ey = ω2εµEy

(k2
x + k2

y)Ex = ω2εµEx .

Thus in either case, even if the wave vectors are complex, the
simple equation √

k2
x + k2

y = ω
√
εµ (29)

holds. We compare this result with

p.w. : k
(22)= ω

√
εµ , (30)

which we derived for the modulus of the real wave-vector of a plane
wave. From the comparison we deduce this somewhat surprising

rule: If V is a vector with one imaginary and two real
components, then it’s modulus must be computed by
V ≡ |V | =

+

√
V 2
x + V 2

y + V 2
z 6= +

√
|Vx|2 + |Vy|2 + |Vz|2 . (31)

Even though we will repeatedly encounter examples for this rule
in course of our evaluation, we will avoid to apply it, as we see no
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obvious way to justify it mathematically and/or physically. Instead
we will always work around the issue like we have done in derivation
of (29), even if this sometimes is a quite tedious task.
We insert the general ansatz (15) into an arbitrary one of the

relations (13):

Êe,xe
i(ke,xx−ωet+ϕe,E) +

+ Êr,xe
i(kr,xx−ωrt+ϕr,E) (13a)= Êb,xe

i(kb,xx−ωbt+ϕb,E) (32)

This condition must be met at any point of the boundary surface
between the two media. Note that only kxx is showing up in the
exponents, because on the boundary surface yfig. 1= 0, and kz

(14)= 0
everywhere. Equation (32) must hold at any time t. That’s possible
only if

ω ≡ ωe = ωr = ωb , (33)

meaning that the radiation’s frequency does not change upon
reflection or refraction.
Furthermore (32) must hold at any position x. That’s possible

only if

kx ≡ ke,x = kr,x = kb,x , kx
(15c)
∈ R . (34)

In this article we exclusively consider the case that the incoming
fields are plane waves. Then ke,y ∈ R according to (19), and kr,y
as well must be real due to√

k2
x + k2

r,y
(29)= ω

√
εaµa

(29)=
√
k2
x + k2

e,y >
√
k2
x , (35)

meaning that the reflected fields are forming a plane wave1 accord-
1 Of course we have “proved” this fact only under the precondition that the
general formula (15) is indeed a correct description of the reflected fields.



Astrophysical Institute Neunhof
Circular se91013, December 2014 18
ing to (19) as well. As

kr
(35)= ke , (36)

we can read from fig. 1 on page 2:

kx = ke sinϑe = ke sinϑr =⇒ ϑr = ϑe (37)
kr,y = −ke cosϑe = −ke,y (38)

For the field in medium b, we can conclude from (29):√
k2
x + k2

b,y = ω
√
εbµb =

√
εbµb√
εaµa

ke
(23)= nb

na
ke (39)

If the field in medium b is a plane wave, then kb,y ∈ R, and then

p.w. : kb
(39)= nb

na
ke . (40)

Then we can read from fig. 1:

p. w. : kx
(34)= kb,x = kb sinϑb

(34)= ke sinϑe

=⇒ nb sinϑb
(40)= na sinϑe (41)

kb,y = kb cosϑb =
+

√
k2
b − k2

x =
(39),(34)= ke +

√
(nb/na)2 − sin2 ϑe ∈ R (42)

(41) is Snellius’ law of refraction. We emphasize, that this relation
was found by reading the angles off from fig. 1. That was only
possible, because all wave-vectors and their respective angles versus
the (y = 0)-plane, including kb and ϑb, have been considered real.
The reverse conclusion is valid as well: The plane waves (15)

with kb,y ∈ R are a correct description of the fields in medium b
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only if the angle ϑb in Snellius’s law of refraction (41) is real, i. e.
only if

sinϑe
(42)
≤ nb

na
= sinϑe,critical . (43)

If kb,y would have a finite real part and a finite imaginary part,
then the fields in medium b would be damped plane waves: The
energy of the waves penetrating into medium b would be partly
absorbed and converted into heat. In this article we are not
interested in that case, instead we assume perfect transparency of
both media.
Therefore we consider as third and last alternative a purely

imaginary kb,y. We define the

penetration depth ≡ γ ≡ i

kb,y
∈ R , (44)

and combine it with the always valid relation

−k2
b,y

(29)= k2
x − ω2εbµb

(37),(39)= k2
e sin2 ϑe −

n2
b

n2
a

k2
e = γ−2 . (45)

Thereby the fields in medium b become

Eb
(15a)= Êbe

−y/γ+i(kxx−ωt+ϕb,E) (46a)

Bb
(15b)= B̂be

−y/γ+i(kxx−ωt+ϕb,B) (46b)

γ
(45)= 1

ke+

√
sin2 ϑe − (nb/na)2

(43)= 1
ke+

√
sin2 ϑe − sin2 ϑe,critical

> 0 .

(46c)

We constrain the penetration depth to the positive root, because y
is always zero or positive in medium b. Therefore only a positive
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γ > 0 is resulting into exponentially damped fields. The negative
root is considered “unphysical”, and is discarded. Note that neither
γ = 0 nor γ = ∞ can happen for ϑe > ϑe,critical. γ can however
assume arbitrarily high finite values for ϑe & ϑe,critical.
(46c) implies ϑe > ϑe,critical. While the fields (15a) and (15b)

with real kb,y ∈ R are correct descriptions of the fields in medium b
exclusively for angles ϑe ≤ ϑe,critical according to (43), the solution
(46) is valid exclusively for over-critical incoming angles.

It will turn out convenient in the sequel, to define an angle ϑb such
that for arbitrary incoming angles ϑe, including (na/nb) sinϑe > 1,
formally the law of refraction

nb sinϑb
(41)= na sinϑe (47)

holds. If (na/nb) sinϑe > 1, then sinϑb must be greater than one.
That is possible only if ϑb ∈ C is complex:

ϑb = ϑ′ + iϑ′′ with ϑ′ ∈ R , ϑ′′ ∈ R
na
nb

sinϑe =(47) sinϑb = eiϑ
′
e−ϑ

′′ − e−iϑ′
e+ϑ′′

2i =

= (e−ϑ′′− e+ϑ′′) cosϑ′
2i + (e−ϑ′′ + e+ϑ′′) sinϑ′

2 (48)

As the left side of (48) is real, the right side must be real as
well. Consequently the first term in the bottom line must vanish,
implying ϑ′′ = 0 and/or ϑ′ = ±π/2. With ϑ′′ = 0, (48) reduces to
sinϑb = sinϑ′. This is a solution of the law of refraction in the
case ϑe ≤ ϑe,critical. But a solution for over-critical angles does
exist only with ϑ′ = ±π/2. We decide for ϑ′ = +π/2:

if ϑe > ϑe,critical :
na
nb

sinϑe = sinϑb = +e−ϑ
′′ + e+ϑ′′

2 = +chϑ′′ . (49)
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With ϑ′ = −π/2 the exotic “modified materials” with negative
index of refraction could be handled. We always will assume ϑ′ =
+π/2, because we occupy ourselves exclusively with conventional
materials, for which na > 0 and nb > 0 holds.
The sign of ϑ′′, however, is not fixed by (49) due to ch(+ϑ′′) =

ch(−ϑ′′). Thus we define the following complex angle:

ϑb ≡ ϑ′ + iϑ′′ with ϑ′ ∈ R , ϑ′′ ∈ R

sinϑb ≡
na
nb

sinϑe (50a)

if ϑe ≤ ϑe,critical :
ϑb ≡ ϑ′ , ϑ′′ = 0 (50b)

if ϑe > ϑe,critical :
ϑb ≡ +π/2 + iϑ′′ . (50c)

Eventually we compute cosϑb:

if ϑe > ϑe,critical :

cosϑb = eiπ/2−ϑ′′ + e−iπ/2+ϑ′′

2 = i
e−ϑ

′′ − e+ϑ′′

2 =

= −i shϑ′′ = −i
±

√
ch2ϑ′′ − 1 (49)=

= −i
±

√
sin2 ϑb − 1 (50a)= −i

±

√
(na/nb)2 sin2 ϑe − 1 (51)

While sinϑb is real, cosϑb is purely imaginary. The well-known
formula sin2 ϑb + cos2 ϑb = 1 holds as well for ϑe > ϑe,critical.
We emphasize that ϑb can be interpreted geometrically only

if ϑe ≤ ϑe,critical (and therefore ϑb ∈ R), as drawn in fig. 1. If
ϑe > ϑe,critical, then (50a) is not a physical statement, but nothing
than a purely formal mathematical definition of the complex angle
ϑb.
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If cosϑb is constrained to

if ϑe > ϑe,critical :

cosϑb
(51)= +i

+

√
sin2 ϑb − 1 = +i

+

√
(na/nb)2 sin2 ϑe − 1 , (52)

then the penetration depth of the evanescent field can be written
in this form:

if ϑe > ϑe,critical :

γ =(44) i

kb,y

(46c)= 1
ke(nb/na) +

√
(na/nb)2 sin2 ϑe − 1

=

=(52) i

ke(nb/na) cosϑb
(53a)

=⇒ kb,y = kenb
na

cosϑb (53b)

We already know

kb,x
(34)= kx

(37)= ke sinϑe
(50a)= kenb

na
sinϑb . (54)

Thereby the evanescent fields (46) can be written as

if ϑe > ϑe,critical :

Eb =(44) Êbe
i(kb·r−ωt+ϕb,E) (55a)

Bb =(44) B̂be
i(kb·r−ωt+ϕb,B) (55b)

kb = ux
(kenb
na

sinϑb
)

+ uy
(kenb
na

cosϑb
)
. (55c)

Note that this is the notation of the fields stated in (15). ux and
uy are unit-vectors in x- and y-direction. As sinϑb is real, and
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cosϑb is imaginary, the x-component of the wave-vector kb is real,
and it’s y-component is imaginary.
Let’s compare (55c) with the wave-vector kb at under-critical

incoming angles:

if ϑe ≤ ϑe,critical :

kb =(41),(42)
uxkb sinϑb + uykb cosϑb (56a)

kb = |kb|
(40)= nb

na
ke

(41)= sinϑe
sinϑb

ke (56b)

Thus the wave-vectors at under- and over-critical incoming angles
are formally identical, if the complex angle ϑb = (50) is inserted,
and if the strange rule (31) is applied, stating

if ϑe > ϑe,critical :

|kb| =(31)
+

√
k2
b,x + k2

b,y + k2
b,z = ke

nb
na
6=

6=
+

√
|kb,x|2 + |kb,y|2 + |kb,z|2 =

=
+

√
2 (na/nb)2 sin2 ϑe − 1 . (57)

We emphasize, that (55) has been derived with no reference what-
soever to (31). Thus this result does not depend on the soundness
of that dubious rule.
The formulas (46) for the evanescent fields are checked by the

experiment of Meixner et. al. [4]. The setup and results of that
experiment have been sketched in fig. 2 on page 5. According to (46),
the evanescent field is in x-direction a wave with wave-number kx =
ke sinϑe. This is confirmed by the measurements. The exponential
damping in y-direction is determined by the penetration depth γ.
In the experiment of Meixner et. al. [4], the value

γ =
(2π · 1.520

514.5 nm
√

sin2 45°− 1.520−2
)−1

= 207.9 nm (58)
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is expected. In sufficient distance from the prism, Meixner et. al.
achieved with γ = 207.8nm± 0.6nm a good fit to their measured
values, thereby impressively confirming the solution (46). We will
discuss their observations at small distance between tip and prism
in section 5.

4. Fresnel-coefficients and phase angles

Any electromagnetic field can be described as the sum of “perpen-
dicular polarized” and “parallel polarized” fields:

E = E⊥︸︷︷︸
Ez

+ E‖︸︷︷︸
Exy

, B = B⊥︸︷︷︸
Bxy

+ B‖︸︷︷︸
Bz

(59)

Perpendicular polarization is meaning that the electric field is
polarized perpendicular to that plane which is spanned by the
wave-vectors, i. e. perpendicular to the xy-plane, see figure 1 on
page 2. Engineers name this a TE-wave, i. e. a wave with transversal
electric field. At perpendicular polarization, only Ez 6= 0, while
Ex = Ey = 0. At parallel polarization Ez = 0, while Exy 6= 0.
Engineers name this a TM-wave, i. e. a wave with transversal
magnetic field. In case of plain waves (k ∈ R), the vectors k,E,B
form a right-handed orthogonal system because of (18a) This is
the reason for the breakdown (59) of B into B‖ and B⊥. The
marks ⊥ and ‖ thus are always referring to the polarization of the
electric field, not the magnetic field, relative to the xy-plane.
In (13) we stated, that — at arbitrary incoming angles of the

radiation — those components of the fields E and H which are
tangential to the boundary surface of the media, and those com-
ponents of the fields D and B which are perpendicular to the
boundary surface, are continuous at the boundary surface. We
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insert the fields (15) into (13):

at perpendicular polarization (Ez = E) :
Êb,ze

iϕb,E = Êe,ze
iϕe,E + Êr,ze

iϕr,E (60a)

B̂b,xe
iϕb,B = µb

µa

(
B̂e,xe

iϕe,B + B̂r,xe
iϕr,B

)
(60b)

B̂b,ye
iϕb,B = B̂e,ye

iϕe,B + B̂r,ye
iϕr,B (60c)

at parallel polarization (Bz = B) :
Êb,xe

iϕb,E = Êe,xe
iϕe,E + Êr,xe

iϕr,E (60d)

B̂b,ze
iϕb,B = µb

µa

(
B̂e,ze

iϕe,B + B̂r,ze
iϕr,B

)
(60e)

Êb,ye
iϕb,E = εa

εb

(
Êe,ye

iϕe,E + Êr,ye
iϕr,E

)
(60f)

Two trivial equations 0 = 0 have been skipped. By definition, we
always choose the six amplitudes

0 ≤ Êe ∈ R , 0 ≤ Êr ∈ R , 0 ≤ Êb ∈ R ,

0 ≤ B̂e ∈ R , 0 ≤ B̂r ∈ R , 0 ≤ B̂b ∈ R (61)

real and positive. Their components can be found by means of the
formulas

B =(18a) 1
ω
k × E (62a)

E =(18b) − 1
ωεµ

k ×B , (62b)

which are valid for arbitrary under- and over-critical incoming
angles. We cancel common factors, and make use of kz = 0:

B̂xe
iϕB = + 1

ω
kyÊze

iϕE
(63f)= − 1

ω2εµ
ky(kxB̂y − kyB̂x)eiϕB (63a)
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B̂ye

iϕB = − 1
ω
kxÊze

iϕE
(63f)= + 1

ω2εµ
kx(kxB̂y − kyB̂x)eiϕB (63b)

B̂ze
iϕB = + 1

ω
(kxÊy − kyÊx)eiϕE (63c)

Êxe
iϕE = − 1

ωεµ
kyB̂ze

iϕB
(63c)= − 1

ω2εµ
ky(kxÊy − kyÊx)eiϕE

(63d)

Êye
iϕE = + 1

ωεµ
kxB̂ze

iϕB
(63c)= + 1

ω2εµ
kx(kxÊy − kyÊx)eiϕE

(63e)

Êze
iϕE = − 1

ωεµ
(kxB̂y − kyB̂x)eiϕB (63f)

Remember that we only for convenience skipped the explicit no-
tation Re[. . .] for the fields and their components, see (16). All
wave-vector components are real, with the exception of kb,y at
overcritical incoming angles:

at arbitrary ϑe :

kx =(34) ke,x = kr,x
(37)= ke sinϑe

(34)= kb,x
(54)= kenb

na
sinϑb (64a)

ke,y =(38) −kr,y
(38)= ke cosϑe (64b)

at ϑe ≤ ϑe,critical :

kb,y =(40),(42) kenb
na

cosϑb , cosϑb ∈ R (64c)

at ϑe > ϑe,critical :

kb,y =(44) i
γ

(53b)= kenb
na

cosϑb , γ ∈ R , i cosϑb ∈ R (64d)

Thus we can conclude from (63)

at arbitrary ϑe :
ϕe,B = ϕe,E OR ϕe,B = ϕe,E + π (65a)
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ϕr,B = ϕr,E OR ϕr,B = ϕr,E + π (65b)
at ϑe ≤ ϑe,critical :
ϕb,B = ϕb,E OR ϕb,B = ϕb,E + π (65c)
at ϑe > ϑe,critical :
ϕb,Bx = ϕb,Ez + π/2 OR ϕb,Bx = ϕb,Ez − π/2 (65d)
ϕb,By = ϕb,Ez OR ϕb,By = ϕb,Ez + π (65e)
ϕb,Ex = ϕb,Bz + π/2 OR ϕb,Ex = ϕb,Bz − π/2 (65f)
ϕb,Ey = ϕb,Bz OR ϕb,Ey = ϕb,Bz + π . (65g)

This result — though quite complicated — is very reasonable: The
flow of energy of the evanescent electromagnetic field is described
by the Poynting vector

at ϑe > ϑe,critical :
Sb = Eb×Bb /µb (66a)

µbSb,x = Eb,yBb,z − Eb,zBb,y (66b)
µbSb,y = Eb,zBb,x − Eb,xBb,z (66c)
µbSb,z = Eb,xBb,y − Eb,yBb,x = 0 . (66d)

At perpendicular polarization Ex = Ey = Bz = 0, and at parallel
polarization Bx = By = Ez = 0. Thus Sb,z = 0 at any polariza-
tion. Because of the phase conditions (65d) through (65g), Sb,y is
changing signs for each quarter wavelength. Consequently there is
for one quarter of a wavelength a finite flow of energy in positive
y-direction, and then the same amount of energy is flowing back
in negative y-direction for the next quarter wavelength. Thus the
mean energy flow in y-direction during each half wavelength is zero.
But there is no change of signs in Sb,x, and consequently there is a
net energy flow of the evanescent field in x-direction. This result
is confirmed by the experimentally observed Goos-Hänchen shift
(described in section 2).
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The change of a phase-angle by π is equivalent to the inversion

of the respective amplitude’s direction. As we did not yet fix the
directions of amplitudes, we are free to decide the alternatives (65)
by definition. We decide for these assignments:

at arbitrary ϑe :
ϕe,B = ϕe,E (67a)
ϕr,B = ϕr,E + π (67b)

at ϑe ≤ ϑe,critical :
ϕb,B = ϕb,E (67c)

at ϑe > ϑe,critical :
ϕb,Bx = ϕb,Ez − π/2 (67d)
ϕb,By = ϕb,Ez (67e)
ϕb,Ex = ϕb,Bz − π/2 (67f)
ϕb,Ey = ϕb,Bz (67g)

Note that the assignments (67e) and (67g) are unique, because
Sb,x = (66b) must be positive for either polarization, to match the
Goos-Hänchen shift. All other assignments are arbitrary. We just
must take care to stay consistent in the sequel. As only the relative
values of the various phase-angles matter, we may choose one of
the phase-angles arbitrarily. We decide for

ϕe,E = 0 . (67h)

Furthermore we choose by definition for all fields

at perpendicular polarization: Êz = Ê ≥ 0 (67i)
at parallel polarization: B̂z = B̂ ≥ 0 , (67j)

i. e. these amplitudes are oriented in positive z-direction.
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Inserting (64) and (67) into (63), we get

at perpendicular polarization and arbitrary ϑe :

B̂e,x = + 1
ω
ke cosϑe Êe,z (68a)

B̂e,y = − 1
ω
ke sinϑe Êe,z (68b)

B̂r,x = + 1
ω
ke cosϑe Êr,z (68c)

B̂r,y = + 1
ω
ke sinϑe Êr,z (68d)

at perpendicular polarization and ϑe ≤ ϑe,critical :

B̂b,x = + 1
ω

kenb
na

cosϑb Êb,z (68e)

B̂b,y = − 1
ω

kenb
na

sinϑb Êb,z (68f)

at perpendicular polarization and ϑe > ϑe,critical :

B̂b,x = + 1
ω

i

γ
Êb,ze

iπ/2 = + 1
ω

kenb
na

i cosϑb Êb,z (68g)

B̂b,y = − 1
ω

kenb
na

sinϑbÊb,z (68h)

at parallel polarization and arbitrary ϑe :

Êe,x = − 1
ωεaµa

ke cosϑe B̂e,z (68i)

Êe,y = + 1
ωεaµa

ke sinϑe B̂e,z (68j)

Êr,x = − 1
ωεaµa

ke cosϑe B̂r,z (68k)

Êr,y = − 1
ωεaµa

ke sinϑe B̂r,z (68l)
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at parallel polarization and ϑe ≤ ϑe,critical :

Êb,x = − 1
ωεbµb

kenb
na

cosϑb B̂b,z (68m)

Êb,y = + 1
ωεbµb

kenb
na

sinϑb B̂b,z (68n)

at parallel polarization and ϑe > ϑe,critical :

Êb,x = − 1
ωεbµb

i

γ
B̂b,ze

iπ/2 = − 1
ωεbµb

kenb
na

i cosϑb B̂b,z (68o)

Êb,y = + 1
ωεbµb

kenb
na

sinϑb B̂b,z (68p)

We know that for plain waves the relation

p.w. : E
(22)= ω

k
B = 1

√
εµ
B = k

ωεµ
B (69a)

holds. Considering (68), it’s obviously quite reasonable to define
the amplitudes of the evanescent fields by

at ϑe > ϑe,critical :

Êb ≡
kenb
naωεµ

B̂b , B̂b ≡
kenb
naω

Êb . (69b)

Furthermore we define

c̃osϑb ≡
{

cosϑb if ϑe ≤ ϑe,critical
i cosϑb if ϑe > ϑe,critical

, c̃osϑb ∈ R . (70)

Inserting (69) and (70) into (68), we get for arbitrary ϑe

at perpendicular polarization :
B̂e,x = +B̂e cosϑe B̂e,y = −B̂e sinϑe (71a)
B̂r,x = +B̂r cosϑe B̂r,y = +B̂r sinϑe (71b)
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B̂b,x = +B̂b c̃osϑb B̂b,y = −B̂b sinϑb (71c)
at parallel polarization :
Êe,x = −Êe cosϑe Êe,y = +Êe sinϑe (71d)
Êr,x = −Êr cosϑe Êr,y = −Êr sinϑe (71e)
Êb,x = −Êb c̃osϑb Êb,y = +Êb sinϑb . (71f)

Note that all amplitudes are real.
Now we have all necessary tools at hand, to fully exploit the

relations (60). We eliminate the magnetic fields by means of (63),
insert ϕe,E(67h)= 0, insert the wave-vector components (64), and
insert the amplitude components (71). Using

sin2 ϑ+ cos2 ϑ = 1

sinϑe = nb
na

sinϑb

at ϑe > ϑe,critical : ϕb,Bz
(67)= ϕb,Ey =(67) ϕb,Ex + π/2 (72)

we get

at perpendicular polarization (Ez = E) :
at ϑe ≤ ϑe,critical :

Êb,ze
iϕb,E = Êe,z + Êr,ze

iϕr,E (73a)

cosϑbÊb,zeiϕb,E = na
nb

µb
µa

cosϑe
(
Êe,z − Êr,zeiϕr,E

)
(73b)

Êb,ze
iϕb,E = Êe,z + Êr,ze

iϕr,E (73c)
at ϑe > ϑe,critical :

Êb,ze
iϕb,Ez = Êe,z + Êr,ze

iϕr,E (73d)

cosϑbÊb,zeiϕb,Ez = na
nb

µb
µa

cosϑe
(
Êe,z − Êr,zeiϕr,E

)
(73e)

Êb,ze
iϕb,Ez = Êe,z + Êr,ze

iϕr,E (73f)
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at parallel polarization (Bz = B) :
at ϑe ≤ ϑe,critical :

Êb cosϑbeiϕb,E = cosϑe
(
Êe + Êre

iϕr,E
)

(73g)

Êbe
iϕb,E = na

nb

µb
µa

(
Êe − Êreiϕr,E

)
(73h)

Êbe
iϕb,E = nb

na

εa
εb

(
Êe − Êreiϕr,E

)
(73i)

at ϑe > ϑe,critical :

Êb c̃osϑbeiϕb,Ex = cosϑe
(
Êe + Êre

iϕr,E
)

(73j)

Êbe
i(ϕb,Ex+π/2) = na

nb

µb
µa

(
Êe − Êreiϕr,E

)
(73k)

Êbe
iϕb,Ey = nb

na

εa
εb

(
Êe − Êreiϕr,E

)
(73l)

The equations for under- and over-critical ϑe are formally identical
because of (72) and because

at perpendicular polarization (Ez = E) : ϕb,E ≡ ϕb,Ez (74a)
at parallel polarization (Bz = B) : ϕb,B ≡ ϕb,Bz . (74b)

Furthermore equations (73a) and (73c) are identical. And (73h)
and (73i) are identical because of

na
nb

µb
µa

=
√
εaµa√
εbµb

µb
µa

= εa
εb

√
εbµb√
εaµa

= nb
na

εa
εb
. (75)

Thus for each polarization there are two linearly independent
equations, which are valid for arbitrary ϑe:

at perpendicular polarization (Ez = E) :
Êbe

iϕb,E = Êe + Êre
iϕr,E (76a)
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cosϑbÊbeiϕb,E = na
nb

µb
µa

cosϑe
(
Êe − Êreiϕr,E

)
(76b)

at parallel polarization (Bz = B) :

Êb cosϑbeiϕb,E = cosϑe
(
Êe + Êre

iϕr,E
)

(76c)

Êbe
iϕb,E = na

nb

µb
µa

(
Êe − Êreiϕr,E

)
(76d)

The phase-angles ϕ of the fields will turn out to be different at
different polarizations. As only the phase-angles of the electrical
fields are showing up in (76), we stipulate an especially simple
notation for them:

ϕ⊥ ≡ ϕr,E at perpendicular polarization (77a)
ϕ‖ ≡ ϕr,E at parallel polarization (77b)
ϕb⊥ ≡ ϕb,E at perpendicular polarization (77c)
ϕb‖ ≡ ϕb,E at parallel polarization (77d)

Remember that we have according to (72) and (73)

at ϑe > ϑe,critical :
ϕb⊥ ≡ ϕb,E = ϕb,Ez (77e)
ϕb‖ ≡ ϕb,E = ϕb,Ey = ϕb,Ex + π/2 . (77f)

Thereby we extract from (76) these Fresnel-coefficients:

at perpendicular polarization:

τ⊥ ≡
Êbe

iϕb⊥

Êe
= 2naµb cosϑe
naµb cosϑe + nbµa cosϑb

(78a)

ρ⊥ ≡
Êre

iϕ⊥

Êe
= naµb cosϑe − nbµa cosϑb
naµb cosϑe + nbµa cosϑb

(78b)
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at parallel polarization:

τ‖ ≡
Êbe

iϕb‖

Êe
= 2naµb cosϑe
nbµa cosϑe + naµb cosϑb

(78c)

ρ‖ ≡
Êre

iϕ‖

Êe
= −nbµa cosϑe + naµb cosϑb

nbµa cosϑe + naµb cosϑb
(78d)

If kb ∈ R, then all fields are plane waves. That’s always the
case if nb > na, but only for ϑe ≤ ϑe,critical if na > nb. For this
case we now can determine all phase-angles. On the right sides of
the equations (78), all factors are real at under-critical incoming
angles. The amplitudes as well are real and ≥ 0 according to (61).
Thus the phase angles can only be 0 or π. τ⊥ ≥ 0 and τ‖ ≥ 0 imply
ϕb⊥ = 0 and ϕb‖ = 0. On the other hand, ϕ⊥ and ϕ‖ can be zero
or π, depending on the relative magnitudes of the two terms in the
numerators of ρ⊥ and ρ‖. Thus we can complete the list (67) of
phase-angles:

at arbitrary ϑe :

ϕe,E =(67h) 0 (67)= ϕe,B (79a)
at ϑe ≤ ϑe,critical :

ϕ
(77)= ϕr,E = (0 OR π) , ϕr,B

(67)= ϕr,E + π (79b)

ϕb
(77)= ϕb,E = 0 (67)= ϕb,B (79c)

at ϑe > ϑe,critical :

ϕ
(77)= ϕr,E = ϕr,B − π (79d)

ϕb,Bx =(67) ϕb,Ez − π/2 (79e)

ϕb,By =(67) ϕb,Ez (79f)

ϕb,Ex =(67) ϕb,Bz − π/2 (79g)
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ϕb,Ey =(67) ϕb,Bz (79h)

According to (62a), the three vectors k,E,B respectively — after
common phase factors have been canceled — the three vectors
k, ÊeiϕE , B̂eiϕB must form a right-handed orthogonal system if
k ∈ R. We check that by means of figures 6 and 7, in which the
equations (71) are displayed graphically.
Êe,z in fig. 6 and B̂e,z in fig. 7 are positive according to (67i),

x

y

z

ke kr

kb

ϑe ϑr

ϑb

na

nb

ϑe

B̂e

B̂r

B̂b

Fig. 6 : Perpendicular polarization, ϕr,E = π, ϕr,B = 0
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y

z

ke kr

kb

ϑe ϑr

ϑb

na

nbϑe

Êe

Êr

Êb

Fig. 7 : Parallel polarization, ϕr,E = 0, ϕr,B = π
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i. e. they are pointing upwards out of the drawing plane. The
three vectors ke, Êe, B̂e are forming right-handed systems in both
drawings.
The three vectors kb, Êb, B̂b as well are forming right-handed

systems in both drawings, in accord with our assignments ϕb =
ϕb,E = 0 and ϕb,B = 0 in case ϑe ≤ ϑe,critical.

The three vectors kr, Êr, B̂r are forming left-handed systems in

x

y

z

ke kr

kb

ϑe ϑr

ϑb

na

nb

ϑe

B̂e

B̂re
iπ

B̂b

Fig. 8 : Perpendicular polarization, ϕr,E = 0, ϕr,B = π
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iπ

Êb

Fig. 9 : Parallel polarization, ϕr,E = π, ϕr,B = 0
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both drawings. Thus we either must have (ϕr,E = π AND ϕr,B = 0)
or (ϕr,E = 0 AND ϕr,B = π), to achieve a right-handed system
kr,Er,Br. The first alternative is drawn in figures 6 and 9, the
second alternative in figures 7 and 8. Again our assignments in
(79) are confirmed.

We have a closer look at ϕr,E ≡ ϕ⊥ resp. ϕr,E ≡ ϕ‖ at ϑe ≤
ϑe,critical:

For perpendicular polarized radiation and kb ∈ R
the phase-angle ϕ⊥ must be zero if nbµa cosϑb <
naµb cosϑe. This means that the field B, but not the
field E, makes a phase-jump of π upon reflection.

(80a)

the phase-angle ϕ⊥ must be π if nbµa cosϑb >
naµb cosϑe. This means that the field E, but not the
field B, makes a phase-jump of π upon reflection.

(80b)

there is no phase-jump if nbµa cosϑb = naµb cosϑe
for the trivial reason that there is no reflected field:
ρ⊥ = 0 and τ⊥ = 1. The angle ϑe,Brewster =
arccos[(nbµa/naµb) cosϑb] is called Brewster-angle.

(80c)

For parallel polarized radiation and kb ∈ R
the phase-angle ϕ‖ must be zero if nbµa cosϑe <
naµb cosϑb. This means that the field B, but not the
field E, makes a phase-jump of π upon reflection.

(81a)

the phase-angle ϕ‖ must be π if nbµa cosϑe >
naµb cosϑb. This means that the field E, but not the
field B, makes a phase-jump of π upon reflection.

(81b)

there is no phase-jump if nbµa cosϑe = naµb cosϑb
for the trivial reason that there is no reflected field:
ρ‖ = 0 and τ‖ = 1. The angle ϑe,Brewster =
arccos[(naµb/nbµa) cosϑb] is called Brewster-angle.

(81c)
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The condition (80c) for the Brewster-angle at perpendicular polar-
ization can be written in the form

nb cosϑb
na cosϑe

= µb
µa

. (82a)

If nb > na, then cosϑe approaches zero faster than cosϑb at in-
creasing ϑe. Thus (82a) has a solution if and only if nb/na < µb/µa.
On the other hand, if nb < na then cosϑb approaches zero faster
than cosϑe at increasing ϑe. Thus (82a) has a solution if and only
if nb/na > µb/µa. In total, this condition holds at perpendicular
polarization:

∃ Brewster-angle⊥ ⇐⇒
{
nb > na AND nb/na < µb/µa

nb < na AND nb/na > µb/µa
(82b)

The character ∃ stands for “exists”.
The condition (81c) for the Brewster-angle at parallel polariza-

tion can be written in the form

nb cosϑe
na cosϑb

= µb
µa

. (82c)

By the same consideration as in case of perpendicular polarization,
we arrive at the following conditions for the existence of a Brewster-
angle at parallel polarization:

∃ Brewster-angle‖ ⇐⇒
{
nb > na AND nb/na > µb/µa

nb < na AND nb/na < µb/µa
(82d)

The conditions (82b) and (82d) are mutually excluding, i. e. for
any combination of materials with given ratios nb/na and µb/µa
there exists a Brewster-angle either only at perpendicular or only
at parallel polarization. As in the frequent case µb = µa the
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ϑb

ϑb

na

nb

Fig. 10 : The quotient wb/we

condition (82d) is met, the Brewster-angle usually appears at
parallel polarization, but only with exotic2 material combinations
at perpendicular polarization.
The energy-density of a plane electromagnetic wave is

1
2
(
ε|E|2 + |B|2/µ

) (22)= ε|E|2 . (83)

The coefficient R of reflection, and the coefficient T of transmission,
are defined by

R = reflected power
incoming power = |Er|2

|Ee|2
(84a)

T = transmitted power
incoming power = εb|Eb|2 · wb · c/nb

εa|Ee|2 · we · c/na
. (84b)

The definition of wb/we = cosϑb/ cosϑe is explained in fig. 10. The
ratio of the velocities of light in the two media is

c/nb
c/na

(18)=
√
εaµa√
εbµb

. (85)

2 I don’t know whether such material combinations exist at all. Informations
from readers are welcome.
mailto: gerold.gruendler@astrophys-neunhof.de

mailto:gerold.gruendler@astrophys-neunhof.de
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Using |Er|2/|Ee|2 = |ρ|2 and |Eb|2/|Ee|2 = |τ |2, we get

if kb ∈ R { R⊥ = |ρ⊥|2 (86a)

T⊥ = |τ⊥|2
nb
na

µa
µb

cosϑb
cosϑe

(86b)

R‖ = |ρ‖|2 (86c)

T‖ = |τ‖|2
nb
na

µa
µb

cosϑb
cosϑe

. (86d)

All factors except of |ρ2| cancel in the coefficients of reflection.
n = 1.5, µr = 1 are typical parameters of glasses used in optical

instruments. n = µr = 1 is a good approximation for air. The Fres-
nel-coefficients for the combination of these materials are displayed
as a function of the incoming angle ϑe in two diagrams on page 42.
The corresponding diagrams of the coefficients of reflection and
transmission are displayed on page 43. In case na/nb = 1.5 the
critical angle is ϑe,critical = 0.23π. The entries for over-critical
incoming angles will be explained later. For the moment being we
continue to consider the case ϑe ≤ ϑe,critical, i. e. kb ∈ R.

If radiation is coming-in under the Brewster-angles 0.31π = 56°
(at refraction from a = air into b = glass) resp. 0.19π = 34° (at
refraction from a = glass into b = air), then ρ‖ = 0, R‖ = 0, and
T‖ = 1. Consequently the radiation reflected under these angles is
completely polarized perpendicular to the xy-plane (i. e. parallel
to the boundary surface of the media). From (80) follows: When
perpendicular polarized radiation, coming in from air, is refracted
at the glass surface, then the wave’s electric field gets a phase
shift of π upon reflection. When perpendicular polarized radiation,
coming in from glass, is refracted at the air surface, then the wave’s
magnetic field gets a phase shift of π upon reflection.
From (81) follows: When parallel polarized radiation, coming

in from air, is refracted at the glass surface under an angle ϑe <
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ϑBrewster, then the wave’s electric field gets a phase shift of π upon
reflection. But if the incoming angle is ϑe > ϑBrewster, then the
wave’s magnetic field gets a phase shift of π upon reflection. If
parallel polarized radiation, coming in from glass, is refracted at
the air surface, then in case ϑe < ϑBrewster the magnetic field, but
in case ϑe > ϑBrewster the electric field of the wave gets a phase
shift of π upon reflection.

Diagrams of the phase-angles for na/nb = 1/1.5 resp. na/nb = 1.5
with µa = µb can be found on page 47. The entries for over-critical
incoming angles (ϑe,critical = 0.23π in case of na/nb = 1.5) will be
explained in the sequel.

To discuss the Fresnel-coefficients at over-critical incoming angles,
we insert

cosϑb =(52) i
+

√
(na/nb)2 sin2 ϑe − 1 (87)

into (78), and get

if ϑe > ϑe,critical :

τ⊥ ≡
Êbe

iϕb⊥

Êe
= 2naµb cosϑe
naµb cosϑe + inbµa +

√
(na/nb)2 sin2 ϑe − 1

(88a)

ρ⊥ ≡
Êre

iϕ⊥

Êe
=
naµb cosϑe − inbµa +

√
(na/nb)2 sin2 ϑe − 1

naµb cosϑe + inbµa +

√
(na/nb)2 sin2 ϑe − 1

(88b)

τ‖ ≡
Êbe

iϕb‖

Êe
= 2naµb cosϑe
nbµa cosϑe + inaµb +

√
(na/nb)2 sin2 ϑe − 1

(88c)
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Fig. 11 : Fresnel-coefficients
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Fig. 12 : Coefficients of reflection and transmission
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ρ‖ ≡
Êre

iϕ‖

Êe
=
−nbµa cosϑe + inaµb +

√
(na/nb)2 sin2 ϑe − 1

nbµa cosϑe + inaµb +

√
(na/nb)2 sin2 ϑe − 1

(88d)

One immediately discerns

if ϑe > ϑe,critical :
R⊥ = |ρ⊥|2 = 1 , R‖ = |ρ‖|2 = 1 . (89)

This result is confirmed by experience: Radiation, which is coming
in at over-critical angles, is 100% reflected.

The coefficients of transmission can not be computed by means
of the Fresnel-coefficients τ in case of ϑe > ϑe,critical, because the
parameter wb, which was applied in (84b), is not defined. Therefore
(84) is replaced by

if ϑe > ϑe,critical :

R = reflected power
incoming power = |Er|2

|Ee|2
(86)= |ρ|2 (89)= 1 (90a)

T = transmitted power
incoming power = 1−R = 0 . (90b)

“Transmitted power” in this context does mean the power, which
can be measured far-off the boundary surface (strictly speaking at
infinitely large distance), because nearby the boundary surface in
medium b the evanescent field is different from zero. Alternatively,
“transmitted power” may be interpreted as the mean value over
time of the power transmitted from medium a into medium b. That
mean value is zero, as the incoming power is eventually totally
flowing back into medium a with the reflected wave. We will see
immediately that the phase-angles ϕ⊥ and ϕ‖ are different from
zero and different from π if ϑe > ϑe,critical. This fact is an indication
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for the time-offset between the transport of energy to the boundary
surface with the incoming wave, and the back-flow of energy with
the reflected wave.
For the material parameters na/nb = 1.5 and µa = µb, the

coefficients (90) are displayed in the bottom diagram of fig. 12 on
page 43.

We divide the Fresnel-coefficients (88) into their real and imagi-
nary parts:

if ϑe > ϑe,critical :

τ⊥ =
2naµb cosϑe(naµb cosϑe − inbµa +

√
(na/nb)2 sin2 ϑe − 1)

n2
aµ

2
b cos2 ϑe + n2

bµ
2
a[(na/nb)2 sin2 ϑe − 1]

(91a)

ρ⊥ = 1
n2
aµ

2
b cos2 ϑe + n2

bµ
2
a[(na/nb)2 sin2 ϑe − 1] ·

·
(
n2
aµ

2
b cos2 ϑe − n2

bµ
2
a[(na/nb)2 sin2 ϑe − 1]−

− i2naµb cosϑenbµa +

√
(na/nb)2 sin2 ϑe − 1

)
(91b)

τ‖ =
2naµb cosϑe(nbµa cosϑe − inaµb +

√
(na/nb)2 sin2 ϑe − 1)

n2
bµ

2
a cos2 ϑe + n2

aµ
2
b [(na/nb)2 sin2 ϑe − 1]

(91c)

ρ‖ = 1
n2
bµ

2
a cos2 ϑe + n2

aµ
2
b [(na/nb)2 sin2 ϑe − 1] ·

·
(
− n2

bµ
2
a cos2 ϑe + n2

aµ
2
b [(na/nb)2 sin2 ϑe − 1] +

+ i2nbµa cosϑenaµb +

√
(na/nb)2 sin2 ϑe − 1

)
(91d)

For the material combination na/nb = 1.5 with µa = µb, the
real and imaginary parts of these coefficients are displayed in the
bottom diagram of fig. 11 on page 42.
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Combining (91) with

if ϑe > ϑe,critical :

|ρ|2 (88)= 1 (88)=⇒ Êr = Êe
(88)=⇒ ρ = cosϕ+ i sinϕ , (92)

we can conclude: At ϑe & ϑe,critical we have (na/nb)2 sin2 ϑe−1 & 0.
Then cosϕ⊥ . 1, sinϕ⊥ . 0, cosϕ‖ & −1, and sinϕ‖ & 0 .
Consequently ϕ⊥ . 0 and ϕ‖ . π .
At ϑe . π/2 we have cosϑe & 0 and (na/nb)2 sin2 ϑe − 1 > 0 .

Then cosϕ⊥ & −1, sinϕ⊥ . 0, cosϕ‖ . 1, and sinϕ‖ & 0 .
Consequently ϕ⊥ & π and ϕ‖ & 0 .

After we have put straight the quadrants of the respective phase-
angles, we can describe them clearly by means of the ambiguous
arctangent function:

if ϑe > ϑe,critical :

ϕ⊥ = arctan
(
−2naµb cosϑenbµa

√
(na/nb)2 sin2 ϑe − 1

n2
aµ

2
b cos2 ϑe − n2

bµ
2
a[(na/nb)2 sin2 ϑe − 1]

)
(93a)

. 0 at ϑe & ϑe,critical , & π at ϑe . π/2

ϕ‖ = arctan
(
−2nbµa cosϑenaµb

√
(na/nb)2 sin2 ϑe − 1

n2
bµ

2
a cos2 ϑe − n2

aµ
2
b [(na/nb)2 sin2 ϑe − 1]

)
(93b)

. π at ϑe & ϑe,critical , & 0 at ϑe . π/2

For the material combinations na/nb = 1/1.5 and na/nb = 1.5
with µa = µb, the phase-shifts ϕ⊥ and ϕ‖ are displayed in fig. 13
on the next page. There also the phase-angles for ϑe ≤ ϑe,critical
are displayed, which we have stated in (80) and (81). ϕ‖ jumps
from π to zero at the Brewster-angle 0.31π, resp. from zero to π at
the Brewster-angle 0.19π. And at the critical angle 0.23π (which
of course does exist only in case na > nb) both ϕ⊥ and ϕ‖ change
continuously: In the curves there is a sharp bend, but no jump.
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Fig. 13 : The phase-shifts ϕ⊥ and ϕ‖
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Sometimes the phase-angles are encountered with different signs
in the literature. While +π = −π modulo 2π, the sign of the
phase-angle (which is a measurable quantity) is not arbitrary at
0 < |ϕ| < π. The different signs are caused by different definitions:
Many authors define ϕ as the angle, by which the phase of the
reflected or the refracted field is running ahead the phase of the
incoming field. According to our definition (15), however, ϕ is the
angle by which the phase of the reflected or refracted field lags the
phase of the incoming field.

The difference ϕ‖ − ϕ⊥ is π at ϑe,critical, then decreases down to
a minimum of 0.7487π at ϑe = 0.287π = 51.7°, and then increases
again up to π at ϑe = π/2. Thus there exist two angles, namely
ϑe = 0.279π = 50.2° and ϑe = 0.296π = 53.3°, at which the
difference ϕ‖−ϕ⊥ is exactly 0.75π. These two angles are indicated
in fig. 13 by purple arrows. In figure 14 a Fresnel-rhomb for the
parameters na/nb = 1.5 , µa = µb , ϑe = 53.3° is drawn. If the
incoming field is a linearly polarized plane wave with Ê⊥ = Ê‖,
then after two total reflections the phase of Ê‖ is lagging the
phase of Ê⊥ by 3π/2 = −π/2 modulo 2π: The linearly polarized
wave has become a circularly polarized wave. If two Fresnel-
rhombs are catenated, the output is again a linearly polarized wave,

ke

kr

ϑe
ϑena

nb

Fig. 14 : A Fresnel-rhomb
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whose plane of polarization is turned 90° versus the incoming field.
The functionality of Fresnel-rhombs has been checked in countless
experiments, providing convincing evidence for the correctness of
the reflective Fresnel-coefficients (88) and the phase-shifts (93).
Obviously |τ⊥|2 = |(88a)|2 6= 1 and |τ‖|2 = |(88c)|2 6= 1. There-

fore the phase-angles can not be found by the same methods as
applied in case of the reflective Fresnel-coefficients. Instead we
compute the quotients Êb/Êe of the amplitudes:

if ϑe > ϑe,critical :
Êb

Êe
=(88a)τ⊥e−iϕb⊥

(91a)= 2naµb cosϑe
n2
aµ

2
b cos2 ϑe + n2

aµ
2
a sin2 ϑe − n2

bµ
2
a

·

·
(
naµb cosϑe cosϕb⊥ − i

[
naµb cosϑe sinϕb⊥+

+ nbµa +

√
(na/nb)2 sin2 ϑe − 1 cosϕb⊥

]
−

− nbµa +

√
(na/nb)2 sin2 ϑe − 1 sinϕb⊥

)
(94a)

Êb

Êe
=(88c)τ‖e−iϕb‖

(91c)= 2naµb cosϑe
n2
bµ

2
a cos2 ϑe + n2

aµ
2
b(na/nb)2 sin2 ϑe − n2

aµ
2
b

·

·
(
nbµa cosϑe cosϕb‖ − i

[
nbµa cosϑe sinϕb‖+

+ naµb +

√
(na/nb)2 sin2 ϑe − 1 cosϕb‖

]
−

− naµb +

√
(na/nb)2 sin2 ϑe − 1 sinϕb‖

)
(94b)

The quotients of the real amplitudes must be real. Consequently
the square brackets must vanish:

sinϕb⊥ = −
nbµa +

√
(na/nb)2 sin2 ϑe − 1
naµb cosϑe

cosϕb⊥ (95a)
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sinϕb‖ = −
naµb +

√
(na/nb)2 sin2 ϑe − 1
nbµa cosϑe

cosϕb‖ (95b)

Insertion into (94) gives

if ϑe > ϑe,critical :

τ⊥e
−iϕb⊥ = Êb

Êe
= 2 cosϕb⊥ (96a)

τ‖e
−iϕb‖ = Êb

Êe
= naµb
nbµa

· 2 cosϕb‖ . (96b)

Êb and ϕb⊥ resp. ϕb‖ are two unknowns in each equations. We
know, however, that the quotient of the amplitude moduli must
be positive. Thus ϕb⊥ and ϕb‖ must be in the first or in the fourth
quadrant, and they must be

ϕb⊥
(95)= arctan

(
−
nbµa +

√
(na/nb)2 sin2 ϑe − 1
naµb cosϑe

)
(97a)

ϕb‖
(95)= arctan

(
−
naµb +

√
(na/nb)2 sin2 ϑe − 1
nbµa cosϑe

)
(97b)

This is sufficient to compute the phase-angles uniquely for given
values of na, nb, µa, µb, ϑe. For the example values na/nb = 1.5 and
µa = µb, the phase-angles are displayed in fig. 15 on the next page,
together with the phase-angles (79) at under-critical incoming
angles. A graphic for the case na < nb is superfluous, because then
ϕb⊥ = ϕb‖ = 0 for arbitrary ϑe according to (79).
Concluding, we compile all phase-angles:

at arbitrary ϑe :

ϕe,E =(67h) 0 (67)= ϕe,B (98a)
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at ϑe ≤ ϑe,critical :

ϕ
(77)= ϕr,E = (0 OR π) , ϕr,B

(67)= ϕr,E + π (98b)

ϕb
(77)= ϕb,E = 0 (67)= ϕb,B (98c)

at ϑe > ϑe,critical :

ϕ
(77)= ϕr,E = (93), siehe Abb.13 (98d)

ϕr,B =(67) ϕr,E + π (98e)

ϕb⊥ ≡ ϕb,E =(77e) ϕb,Ez = (97a), see fig.15 (98f)

ϕb,Bx =(67) ϕb,Ez − π/2 (98g)

ϕb,By =(67) ϕb,Ez (98h)

ϕb‖ ≡ ϕb,E =(77f) ϕb,Ey = (97b), see fig.15 (98i)

ϕb,Ex =(77f) ϕb,Ey − π/2 = ϕb⊥ − π/2 (98j)

ϕb,Bz =(67) ϕb,Ey
(67)= ϕb,Ex + π/2 = ϕb⊥ (98k)

0.0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0.0
na/nb = 1.5 µa/µb = 1

ϕ/π

ϑe/π

ϕb⊥ ϕb‖

ϕb‖

ϕb⊥

Fig. 15 : The phase-angles ϕb⊥ and ϕb‖
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The following relations in-between the phase-angles are showing
up in the numerical computations:

if ϑe > ϑe,critical :
ϕ⊥ = 2ϕb,⊥ , ϕ‖ − π = 2ϕb,‖ (99)

These relations are easy to understand. As Maxwell’s equations
are invariant under time inversion, and as we are assuming both
materials to be perfectly transparent, the process of reflection
must be invariant under time inversion as well. Consequently
the phase-shift between the evanescent field and the incoming
field must be equal to the phase-shift between the evanescent
field and the reflected field. The additional shift of π at parallel
polarization is caused by the jump of π of the reflected field’s phase
at ϑe > ϑe,Brewster.
Êb/Êe

(78)= |τ | is largest at ϑe & ϑe,critical, and then decreases
rapidly towards zero at larger incoming angles, as can be read
off fig. 16 . As furthermore the strength of the evanescent fields

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0
na/nb = 1.5 µa/µb = 1

ϑe/π

|τ‖|

|τ⊥|

|ρ⊥|
|ρ‖|

Fig. 16 : Moduli of the Fresnel-coefficients
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is proportional to e−y/γ with γ according to (46c) continuously
decreasing for increasing ϑe, in experimental setups like sketched in
fig. 2 the by far strongest signal is to be expected at ϑe & ϑe,critical.
Now we are going to discuss the shift of the reflected beam

(Goos-Hänchen shift). Artmann’s [7] theory of the Goos-Hänchen
shift is considered essentially correct still by today, despite various
objections and alternative approaches by other authors. A concise
review of the theoretical and experimental work published on the
Goos-Hänchen shift has been compiled by Berman [8].

Artmann’s computations are quite intricate. Therefore it’s help-
ful to read in parallel the presentation of Ghatak et. al. [9, 10]. The
result for the magnitude D of the Goos-Hänchen shift is

D = − 1
ke

dϕ
dϑe

. (100)

The phase-angles of the reflected radiation are indicated in (93). It’s
visible from the bottom diagram in fig. 13 on page 47 that dϕ/dϑe
is negative at over-critical incoming angles. Thus D = (100) is
positive. Furthermore it’s visible from that diagram, that D is
largest at ϑe & ϑe,critical, because there the graphs are steepest. For
this reason, Goos and Hänchen evaluated the beam-shift exclusively
at angles ϑe, which were only slightly larger than ϑe,critical.
We now are going to derive (100). The fields (15) have infinite

extension. If we want to discuss beam-shifts, then we must constrict
the radiation to a narrow line at least in x-direction, as sketched in
fig. 3 on page 6. We continue to assume a sharply defined value of

k =
+

√
k2
x + k2

y = nω

c
. (101)

Thus a constriction of the radiation in x-direction (i. e. a blurred
value of kx) will imply automatically a constriction in y-direction
(i. e. a blurred value of ky) as well. As in the experiment of Goos
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and Hänchen the constriction of the radiation in in x-direction was
narrower by several orders of magnitude than the constriction in
z-direction, it won’t cause any problem if we continue to assume
infinite extension of the radiation in z-direction (i. e. the sharply
defined value kz = 0).

Using kx
(34)= ke,x

(34)= kr,x, we produce laterally constricted beams
by means of Fourier-integrals. Thereby we get these electrical fields:

Ee =(15)
+∞∫
−∞

dkx
2π Ĝe e

i(kxx+ke,yy−ωt) (102a)

Er =(15)
+∞∫
−∞

dkx
2π Ĝr e

i(kxx+kr,yy−ωt+ϕ) (102b)

The amplitudes Ĝ, the wavenumber-components ky, and the phase-
angles ϕ all depend on kx. These functions can be expanded around
an arbitrary central value k(0)

x by Taylor series. For example, the
phase is

ϕ(kx) =
∞∑
j=0

(kx − k(0)
x )j

j!
djϕ
dkjx

∣∣∣
k

(0)
x

. (103)

If the wave numbers, for which Ê(kx) is differing significantly from
zero, are differing only slightly from k

(0)
x , then the expansions can

be stopped after the linear term:

ϕ(kx) ≈ ϕ(k(0)
x ) + (kx − k(0)

x ) dϕ
dkx

∣∣∣
k

(0)
x

(104)

if |kx − k(0)
x | � |k(0)

x |

In this approximation, the fields become
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Ee = ei(k

(0)
x x+ke,y(k(0)

x )y−ωt) ·

·
+∞∫
−∞

dkx
2π Ĝe(kx) e

i(kx−k(0)
x )
(
x+ dke,y

dkx

∣∣∣
k

(0)
x

y

)
(105a)

Er = ei(k
(0)
x x+kr,y(k(0)

x )y−ωt+ϕ(k(0)
x ) ) ·

·
+∞∫
−∞

dkx
2π Ĝr(kx) e

i(kx−k(0)
x )
(
x+ dkr,y

dkx

∣∣∣
k

(0)
x

y+ dϕ
dkx

∣∣∣
k

(0)
x

)
. (105b)

The exponential functions, which have been drawn out of the
integrals, are describing plane waves of infinite extension with
the large wave number k(0)

x in x-direction. The integrands are
describing the modulation of these waves’ amplitudes with the
small wave number kx − k(0)

x . The rays (105) are limited in x- and
y-direction. Their maxima of intensity at the boundary surface
between the two media (i. e. at y = 0) are located at those x
values, at which the exponential functions in the integrals have
their maxima, i. e. at

xe,peak(y = 0) = 0 (106a)

xr,peak(y = 0) = − dϕ
dkx

∣∣∣
k

(0)
x

. (106b)

One can read from fig. 3 on page 6:

D = Dx cosϑe =
(
xr,peak(y = 0)− xe,peak(y = 0)

)
cosϑe =

=(106) − cosϑe
dϕ
dkx

∣∣∣
k

(0)
x

= −cosϑe
ke

dϕ
dsinϑ

∣∣∣
ϑe

= − cosϑe
ke cosϑe

dϕ
dϑ
∣∣∣
ϑe

(107)

This is identical to Artmann’s result (100).
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Corresponding to the experiments of Goos and Hänchen, Art-

mann restricted his treatise to angles ϑe, which were only slightly
larger than ϑe,critical. This is resulting into an appreciable simplifi-
cation of the formulas, because for such angles the second terms
in the denominators of (93) are negligible versus the first terms
respectively. Thus one gets in good approximation

if ϑe & ϑe,critical

ϕ⊥ =(93) arctan
(2nbµa

√
(na/nb)2 sin2 ϑe − 1
naµb cosϑe

)
. 0 (108a)

ϕ‖ =(93) arctan
(2naµb

√
(na/nb)2 sin2 ϑe − 1
nbµa cosϑe

)
. π

= π +
(naµb
nbµa

)2
· ϕ⊥ . (108b)

The constant factor, whose order of magnitude is 1, could be pulled
into the tangent function because of |ϕ⊥| � 1. Using the formula

d
dx arctan(x) = 1

1 + x2 , (109)

we get

dϕ⊥
dϑe

= −1

1 +
(2nbµa

√
(na/nb)2 sin2 ϑe−1
naµb cosϑe

)2
2nbµa
naµb

1
cos2 ϑe

·

·
(
[(na/nb)2 sin2 ϑe − 1]−1/2(na/nb)2 sinϑe cos2 ϑe +

+ sinϑe
√

(na/nb)2 sin2 ϑe − 1
)
. (110)

As (na/nb)2 sin2 ϑe − 1 � 1 nearby the critical angle, in the nu-
merator and in the denominator the respective second terms are
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negligible versus the first terms.

dϕ⊥
dϑe

= − 2naµa sinϑe
nbµb

√
(na/nb)2 sin2 ϑe − 1

(111)

Thus the Goos-Hänchen shift becomes

if ϑe & ϑe,critical

D⊥ =(100) 1
ke

2µa sinϑe
µb

√
sin2 ϑe − (nb/na)2

(46c)= 2µa sinϑe
µb

· γ =

= 2nbµa
naµb

· γ (112a)

D‖ =
(naµb
nbµa

)2
·D⊥ = 2naµb

nbµa
· γ . (112b)

This results coincides (within the measurement accuracy) with
the observations of Goos and Hänchen. The shift is proportional
to the penetration depth γ, i. e. it is largest nearby ϑe,critical, and
decreases continuously with increasing ϑe.

5. Multilayer stacks and FTIR

In this section we will compute reflection and refraction by a
stack of three material layers a, b, c, as displayed in fig. 17 on the
next page. Let the indices of refraction of the three materials be
na,nb,nc, their magnetic permeabilities µa,µb,µc. As there is only
one relevant angle in each material layer, we now name the three
angles ϑa,ϑb,ϑc.

We define the notation τab for the Fresnel-coefficient τab⊥ or τab‖,
and the notation ρab for the Fresnel-coefficient ρab⊥ or ρab‖. The
notations ρab and τab are applied, if the wave comes in from medium
a and impinges onto the surface of medium b. The notations ρba
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na

nb

nc

µa

µb

µc

d

ϑa ϑa

ϑb

ϑc

Fig. 17 : A stack of three material layers

and τba are used if the wave is coming in from medium b and
impinges onto the surface of medium a. The notations ρbc and τbc
are used if the wave is coming in from medium b and impinges
onto the surface of medium c. ρba and τba differ from ρab and τab
by the exchange of all indices a and b, and the exchange of the
angles ϑa and ϑb, see (78).
Furthermore we now apply, instead of the notations ϕ ≡ ϕr,E

and ϕb ≡ ϕb,E used so far, these notations for the electric field’s
phase angles at reflection and refraction:

ϕr,ab at reflection at the boundary ab (113a)
ϕr,ba at reflection at the boundary ba (113b)
ϕt,ab at transmission through the boundary ab (113c)
ϕt,ba at transmission through the boundary ba (113d)
ϕr,bc at reflection at the boundary bc (113e)
ϕt,bc at transmission through the boundary bc (113f)

As before, the incoming and the reflected plane waves are assumed
to have infinite extension and infinite coherence-length.
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For arbitrary combinations na, nb, nc, and arbitrary under- or

over-critical incoming angles, we have

ka,x
(34)= kb,x

(34)= kc,x =
= ka sinϑa = kb sinϑb = kc sinϑc =

= naω

c
sinϑa = nbω

c
sinϑb = ncω

c
sinϑc

=⇒ na sinϑa = nb sinϑb = nc sinϑc , (114)

with ϑb and/or ϑc possibly being complex according to (50). Thus
for layer-stacks with an arbitrary numbers of layers a, b, c, . . . , z
Snellius’s law na sinϑa = nz sinϑz holds for the outer layers, and
we don’t need to consider refractions in the inner layers. But note
that this is a statement on the incoming and outgoing angles only.
The intensities of the transmitted and the reflected radiation will of
course be strongly influenced by the properties of the inner layers.
We return to the stack of three layers. If na > nb and nc > nb,

and if radiation is coming in under an angle ϑa < ϑa,critical, then
the radiation in medium b must be a plane wave, and consequently
ϑc < ϑc,critical, considering symmetry under time-inversion. If ϑa >
ϑa,critical, then the radiation in medium b must be evanescent, and
the outgoing angle must be ϑc > ϑc,critical, again due to invariance
under time inversion. Consequently, if na > nb < nc, then the
transmitted part of the radiation will go out under the angle
ϑc = ϑc,critical if ϑa = ϑa,critical.
The “Stokes-relations”

ρ2
ab + τbaτab = 1 (115a)
ρab + ρba = 0 (115b)

will turn out to be most useful in the following discussion. They
are easily proved due to direct insertion of the Fresnel-coefficients
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(78). As the Fresnel-coefficients (78) are valid for arbitrary under-
and overcritical incoming angles, the Stokes-relations (115) are as
well valid for arbitrary incoming angles 0 ≤ ϑa ≤ π/2.

The Stokes-relations can be made plausible as a consequence
of invariance under time inversion. The process of reflection and
refraction must be invariant under time inversion, because we are
always assuming lossless media (no energy is absorbed by either of
the media). In the left drawing of figure 18, the process is sketched
as we considered it up to now. Due to inversion of the direction of
time it changes to the process displayed in the right sketch:
A wave with wave-number k′e = −kr, coming in from medium

a, impinges under the angle ϑa onto the surface of medium b, and
is partially reflected into medium a and partially refracted into
medium b. At the same time a wave with wave-number k′′e = −kb,
coming in from medium b, impinges under the angle ϑb onto the
surface of medium a, and is partially reflected into medium b and
partially refracted into medium a. Clearly the two incoming waves
must have the same phase relations as the two outgoing waves in
the process of the left sketch.

ke kr

kb

k′r

k′′a

k′e

k′′e
k′′r

k′b

ϑa ϑa

ϑb

ϑa ϑa

ϑb ϑb

na na

nb nb

Fig. 18 : Time inversion



Astrophysical Institute Neunhof
Circular se91013, December 2014 61
While the waves, which are reflected and refracted into the

medium a, add up to the outgoing wave with wave-number k′r =
k′′a = −ke, those waves, which are reflected and refracted into
medium b with wave-numbers k′b = k′′r must mutually annihilate
due to destructive interference.
The Fresnel-relations

Êbe
iϕt,ab

(78)= τabÊe , Êre
iϕr,ab

(78)= ρabÊe (116)

apply to the left sketch in fig. (18). For the right sketch in that
figure, the relations

Ê
′
be
iϕt,ab+ϕr,ab = τabÊ

′
ee
iϕr,ab = τabÊre

iϕr,ab = τabρabÊe (117a)
Ê

′
re
i2ϕr,ab = ρabÊ

′
ee
iϕr,ab = ρabÊre

iϕr,ab = ρ2
abÊe (117b)

Ê
′′
ae

iϕt,ba+ϕt,ab = τbaÊ
′′
e e

iϕt,ab = τbaÊbe
iϕt,ab = τbaτabÊe (117c)

Ê
′′
r e

iϕr,ba+ϕt,ab = ρbaÊ
′′
e e

iϕt,ab = ρbaÊbe
iϕt,ab = ρbaτabÊe (117d)

apply. Invariance under time inversion implies

Ê
′
re
i2ϕr,ab + Ê

′′
ae

iϕt,ba+ϕt,ab = Êe = ρ2
abÊe + τbaτabÊe (118a)

Ê
′
be
iϕt,ab+ϕr,ab + Ê

′′
r e

iϕr,ba+ϕt,ab = 0 = τabρabÊe + ρbaτabÊe .
(118b)

Canceling Êe and τab, the Stokes-relations (115) follow immediately.
τab can be canceled only if τab 6= 0, i. e. according to (78) at arbitrary
ϑa < π/2. Thus we have explained the Stokes-relations by the
invariance under time inversion at arbitrary ϑa < π/2. (Only from
(78) it’s visible, that the Stokes relations hold as well at ϑa = π/2.)
While figure 18 can only illustrate the case ϑa ≤ ϑa,critical, the
interference condition (118) is valid even at over-critical incoming
angles, at which the y-components of the wave vectors kb,k′′e ,k′b,k′′r
are imaginary.
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5.1. Under-critical angles

We evaluate the three-layer stack sketched in fig. 17 on page 58 with
arbitrary refractive indices na, nb, nc, assuming either na < nb < nc,
or ϑa ≤ ϑa,critical and ϑc ≤ ϑc,critical. In this case, the fields are plain
waves in all three media. The phase-difference between the wave,
which one-times is reflected at the surface bc and then transmitted
into the medium a, relative to that wave which is immediately
reflected at the surface ab, is

ϕt,ab + ϕr,bc + ϕt,ba + η − ϕr,ab , (119)

with η being the geometric phase-difference

η = kb
2d

cosϑb
− ka sinϑa

2d sinϑb
cosϑb

= 2dkb cosϑb =

= 2d|kb,y|
(53b)= 2d kanb

na
cosϑb ∈ R . (120)

Radiation, which is directly reflected at the boundary surface
ab, is described by

Ê(1)
r eiχ(1) ≡ Ê(1)

r eiϕr,ab =(78) ρabÊe . (121)

Radiation, which is transmitted into the medium b, once reflected
at the surface bc, and then transmitted into the medium a, is
described by

Ê(2)
r eiχ(2) ≡ Ê(2)

r ei(η+ϕt,ba+ϕr,bc+ϕt,ab) =(78) eiητbaρbcτabÊe . (122)

Radiation, which is reflected a second time between the boundaries,
is described by

Ê(3)
r eiχ(3) ≡ Ê(3)

r ei(2η+ϕt,ba+ϕr,bc+ϕr,ba+ϕr,bc+ϕt,ab) =(78)

= ei2ητbaρbcρbaρbcτabÊe . (123)
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The total electrical field reflected into medium a is

Êre
iα ≡

∞∑
m=1

Ê(m)
r eiχ(m) = ρabÊe + eiητbaρbcτabÊe+

+ ei2ητbaρbcρbaρbcτabÊe + . . . (124)

As usual, we define the amplitude Êr real and ≥ 0. The reflective
three-layer Fresnel coefficient is defined by

ρabc ≡
Êre

iα

Êe
= ρab + τbaτabρbce

iη
∞∑
j=0

(ρbaρbceiη)j . (125)

ϑb = π/2 at ϑa = ϑa,critical, and consequently τba(78)= 0. Thus

ρabc = ρab
(78)= ±1 at ϑa = ϑa,critical . (126)

If ϑa < ϑa,critical, then |ρbaρbceiη| < 1, and the geometric series
(125) is converging. In this case we get

if ϑa ≤ ϑa,critical :

ρabc = ρab − ρabρbaρbceiη + τbaτabρbce
iη

1− ρbaρbceiη
(115)= ρab + ρbce

iη

1 + ρabρbceiη
(127)

While ϑa,critical had to be excluded in course of the derivation, this
result is identical to (126) at the critical angle. Thus (127) is valid
for arbitrary angles ≤ ϑa,critical.
Transmission through the layer stack can be computed by the

same method. Radiation, which is transmitted without multiple
reflections through both surfaces, is described by

Ê
(1)
t eiξ(1) ≡ Ê(1)

t ei(η/2+ϕt,bc+ϕt,ab) (78)= eiη/2τbcτabÊe . (128a)
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Radiation, which is transmitted into medium b, once reflected at
the surface bc, once reflected at the surface ba, and then transmitted
into medium c, is described by

Ê
(2)
t eiξ(2) ≡ Ê(2)

t ei(3η/2+ϕt,bc+ϕr,ba+ϕr,bc+ϕt,ab) =

=(78) ei3η/2τbcρbaρbcτabÊe . (128b)
Radiation, which is reflected another time between the surfaces, is
described by

Ê
(3)
t eiξ(3) ≡ Ê(3)

t ei(5η/2+ϕt,bc+ϕr,ba+ϕr,bc+ϕr,ba+ϕr,bc+ϕt,ab) =

=(78) ei5η/2τbcρbaρbcρbaρbcτabÊe . (128c)
The total electrical field transmitted into medium c is

Ête
iβ ≡

∞∑
m=1

Ê
(m)
t eiξ(m) = eiη/2τbcτabÊe + ei3η/2τbcρbaρbcτabÊe+

+ ei5η/2τbcρbaρbcρbaρbcτabÊe + . . .
(129)

As usual we define the amplitude Êt real and ≥ 0. The three-layer-
stack Fresnel-coefficient of transmission is defined by

τabc ≡
Ête

iβ

Êe
= τbcτabe

iη/2
∞∑
j=0

(ρbaρbceiη)j . (130)

ϑb = π/2 at ϑa = ϑa,critical, and consequently τbc(78)= 0. Thus
τabc = 0 at ϑa = ϑa,critical . (131)

If ϑa < ϑa,critical, then |ρbaρbceiη| < 1, and the geometric series
(130) is converging:

if ϑa ≤ ϑa,critical :

τabc ≡
Ête

iβ

Êe
= τbcτabe

iη/2

1− ρbaρbceiη
(132)
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While ϑa,critical had to be excluded in course of the derivation, this
result is identical to (131) at the critical angle. Therefore (132) is
valid at arbitrary angles ≤ ϑa,critical.

The coefficients of reflection and transmission of the layer-stack
fig. 17 are

if ϑa ≤ ϑa,critical :

R = |rabc|2
(127)=

∣∣∣ ρab + ρbce
iη

1 + ρabρbceiη

∣∣∣2 (133a)

T = 1−R . (133b)

In case of a symmetric layer-stack a = c 6= b these formulas simplify
to

if ϑa ≤ ϑa,critical :

R = |raba|2 =
∣∣∣ ρab + ρbae

iη

1 + ρabρbaeiη

∣∣∣2 (115)=
∣∣∣ρab − ρabeiη1− ρ2

abe
iη

∣∣∣2 (134a)

T = 1−R . (134b)

Alternatively we may write

T = |taba|2
(132)=

∣∣∣τbaτabeiη/2

1− ρ2
bae

iη

∣∣∣2 (115)=
∣∣∣(1− ρ2

ab)eiη/2

1− ρ2
abe

iη

∣∣∣2 . (134c)

In (86) we needed to consider the widening of the refracted radi-
ation, as sketched in fig. 10, when we described T as a function
of τab. But for a symmetric layer stack, ϑc = ϑa holds. Therefore
no widening factor is showing up in (134c). We double-check the
consistency of (134c) and (134b). If ϑa ≤ ϑa,critical, then both
ρab ∈ R and η ∈ R are real:
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R+ T = (134a) + (134c) =

= (ρab − ρabeiη)(ρab − ρabe−iη) + (1− ρ2
ab)eiη/2(1− ρ2

ab)e−iη/2

(1− ρ2
abe

iη)(1− ρ2
abe
−iη)

= ρ2
ab − ρ2

abe
−iη − ρ2

abe
iη + ρ2

ab + 1− ρ2
ab − ρ2

ab + ρ4
ab

1− ρ2
abe
−iη − ρ2

abe
iη + ρ4

ab

= 1 (135)

This is proofing the consistency of (134c) and (134b).
It’s clearly visible from (134), how at ϑa < ϑa,critical the reflective

properties of the layer stack can be tuned due to variation of d
and consequently of η = (120). If eiη = 1 (and consequently
eiη/2 = −1), then R = 0 and T = 1. If eiη = −1, then R is
maximized and T is minimized.

5.2. Over-critical angles

We will discuss the case ϑa > ϑa,critical exclusively for layer-stacks
with na > nb < nc, but not for layer-stacks with na > nb > nc. At
na > nb < nc and ϑa > ϑa,critical, the evanescent fields in medium
b are described by

Eb =(46) Êbe
−y/γ+i(xke,x−ωt+ϕb,E) (136a)

Bb =(46) B̂be
−y/γ+i(xke,x−ωt+ϕb,B) . (136b)

At multiple reflections, the geometric phase-angle η is replaced
by a damping factor e−d/γ for each transition in either direction
through the layer b. Thus we get instead of (129)

τabc ≡
Ête

iβ

Êe
= e−d/γτbcτab + e−3d/γτbcρbaρbcτab+

+ e−5d/γτbcρbaρbcρbaρbcτab + . . . (137)
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Due to the exponential damping, we always have |ρbaρbce−2d/γ | < 1.
Thus the geometric series is converging.

if ϑa > ϑa,critical :

τabc = τbcτabe
−d/γ

∞∑
j=0

(ρbaρbce−2d/γ)j = τbcτabe
−d/γ

1− ρbaρbce−2d/γ (138)

The reflective coefficient (124) is replaced by

ρabc≡
Êre

iα

Êe
= ρab+ e−2d/γτbaρbcτab+ e−4d/γτbaρbcρbaρbcτab+. . .

= ρab + τbaτabρbce
−2d/γ

∞∑
j=1

(ρbaρbce−2d/γ)j . (139)

Due to the exponential damping, we always have |ρbaρbce−2d/γ | < 1.
Thus the geometric series is converging.

if ϑa > ϑa,critical :

ρabc = ρab − ρabρbaρbce−2d/γ + τbaτabρbce
−2d/γ

1− ρbaρbce−2d/γ

=(115) ρab + ρbce
−2d/γ

1− ρbaρbce−2d/γ (140)

Obviously we could have arrived much simpler at (138) and (140)
due to replacing iη by −2d/γ in (132) and (127).

The coefficients of reflection and transmission of the layer-stack
fig. 17 are

if ϑa > ϑa,critical :

R = |rabc|2
(140)=

∣∣∣ ρab + ρbce
−2d/γ

1− ρbaρbce−2d/γ

∣∣∣2 (141a)

T = 1−R . (141b)
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In case of a symmetric layer stack a = c 6= b, these formulas simplify
to

if ϑa > ϑa,critical :

R = |ρaba|2 =
∣∣∣ρab − ρabe−2d/γ

1− ρ2
abe
−2d/γ

∣∣∣2 (142a)

T = 1−R . (142b)

Alternatively we may write

T = |τaba|2
(138)=

∣∣∣ τbaτabe−d/γ1− ρ2
abe
−2d/γ

∣∣∣2 (115)=
∣∣∣(1− ρ2

ab)e−d/γ
1− ρ2

abe
−2d/γ

∣∣∣2 . (142c)

In (86) we needed to consider the widening of the refracted radiation
as sketched in fig. 10, when we displayed T as a function of τab.
But for a symmetric layer stack ϑc = ϑa holds, and therefore no
widening factor is showing up in (142c). We double-check the
consistency of (142c) and (142b). In case ϑa > ϑa,critical, the
coefficient ρab ∈ C in general is complex, with |ρab|2 = 1:

R+ T = (142a) + (142c) =

= (ρab − ρabe−2d/γ)(ρ∗ab − ρ∗abe−2d/γ)+
(1− ρ2

abe
−2d/γ)(1− [ρ2

ab]∗e−2d/γ)
+(1− ρ2

ab)e−d/γ(1− [ρ2
ab]∗)e−d/γ =

= 1− e−2d/γ − e−2d/γ + e−4d/γ+
1− [ρ2

ab]∗e−2d/γ − ρ2
abe
−2d/γ + e−4d/γ

+e−2d/γ − [ρ2
ab]∗e−2d/γ − ρ2

abe
−2d/γ + e−2d/γ

= 1 (143)

This is proofing the consistency of (142c) and (142b).
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If ϑa > ϑa,critical, then R = (141a) ≈ 1 at d � γ, and R ≈ 0

at d � γ. Only at d = ∞, R is exactly 1 and T is exactly zero.
At finite d, the equations (141) (resp. (142) for a symmetric layer-
stack) are a quantitative description of the intensities, which can
be observed at frustrated total internal reflection (FTIR).

T
(142c)=

∣∣∣(1− ρ2
ab)e−d/γ

1− ρ2
abe
−2d/γ

∣∣∣2 ≈ ∣∣∣1− ρ2
ab

∣∣∣2e−2d/γ if d > γ (144)

is a fair approximation at d > γ, which becomes an excellent
approximation at d� γ. This is the exponential decrease of T with
increasing d, which Meixner et. al. [4] found for large d, see equation
(58) on page 23. They found a significantly lower decrease at small
d. They did not, however, explain that observation with our
formula (142c), because this formula is based on the assumption of
infinitely extended surfaces, between which the FTIR is happening.
In contrast, Meixner et. al. used in their experiment as second
surface a tip with only 80 nm effective aperture, i. e. an aperture
which was much smaller than the applied wavelength of 514.5 nm.
Therefore they correctly did not fit their results to (142c), but to
a special correction factor which they computed with respect to
the limited aperture of their detector.

We close this article with the evaluation of the FTIR of a wave-
packet, whose extension is limited in time and space (at least in
xy-direction). Coming in from medium a, it’s peak is impinging
at time te = 0 under the angle ϑa > ϑa,critical at xe = 0 onto the
boundary surface of medium b. We are assuming a symmetric layer
stack aba with nc = na > nb. d is the thickness of layer b. The
situation is sketched in fig. 19 on the next page. We are looking
for the answers to four questions:
∗ At which point xr of the surface (y = 0) will the peak of the
reflected wave packet show up?
∗ At which point xt of the surface (y = d) will the peak of the
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transmitted wave packet show up?
∗ At which time tr will the peak of the reflected wave packet show
up at point (x = xr, y = 0)?
∗ At which time tt will the peak of the transmitted wave packet
show up at point (x = xt, y = d)?

x

y

z xr

xt

na

nb

na

µa

µb

µa

d

ϑa ϑa

ϑa

ke kr

kt

Fig. 19 : Frustrated total internal reflection (FTIR)

We define the scalar instantaneous values
Ẽe(t, r) = Êee

i(r·ke−ωt) (145a)

Ẽr(t, r) =(139) Êrei(r·kr−ωt+α) = ρabaẼe(t, r) (145b)

Ẽt(t, r) =(137) Êtei(r·kt−ωt+β) = τabaẼe(t, r) (145c)
kt = ke , |kr| = |ke| , kr,y = −ke,y ,

which must not be confused with the moduli Ee, Er, Et. The
moduli always are ≥ 0, while the scalar instantaneous values are
oscillating around zero, and thereby are assuming positive and
negative values.
We can read off (145):

ρaba = |ρaba| eiα (146a)
τaba = |τaba| eiβ (146b)
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Following the delineation by Ghatak et. al. [9, 10], we form wave
packets, which are limited in space and time, due to Fourier-
transformations of the fields (145). With kx(34)= ke,x

(34)= kr,x
(34)= kt,x,

we get:

Ẽe =
+∞∫
−∞

dkx
2π

+∞∫
−∞

dω
2π Ĝe e

i(kxx+ke,yy−ωt) (147a)

Ẽr =
+∞∫
−∞

dkx
2π

+∞∫
−∞

dω
2π |ρaba| Ĝee

i(kxx+kr,yy−ωt+α) (147b)

Ẽt =
+∞∫
−∞

dkx
2π

+∞∫
−∞

dω
2π |τaba| Ĝee

i(kxx+ke,y(y−d)−ωt+β) (147c)

Note the factor (y−d) in the exponent of the last function, instead
of the factor y in the first and second function. The fields are
evanescent in the range between y = 0 and y = d. There is the
phase-jump β on the way from y = 0 to y = d, but no additional
change of phase due to the product ke,yy.
The Fourier-amplitude Ĝe, the wave-number-components ke,y

and kr,y = −ke,y, the moduli |ρaba| and |τaba| of the Fresnel co-
efficients, and the phase angles α and β, all are functions of the
two variables of integration kx and ω. Note that ka ≡ ke = kr
and k2

a,y ≡ k2
e,y = k2

r,y. We consider kx and ω as two mutually
independent variables. That means: While kx is being varied,

ka = ωna
c

=
√
k2
x + k2

a,y = (148a)

= constant at integration over and derivative to kx

is kept constant. Thereby the Fourier-amplitude Ĝe does not only
fix the spectrum of the wave-packet’s kx-values, but indirectly
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also the spectrum of it’s ky-values. Due to integration over kx,
the infinitely extended wave fields are restricted to a ray which is
limited in x- and y-direction. Only in z-direction the fields stay
extended infinitely.
While ω is being varied,

kx =
√
k2
a − k2

a,y =
√
ω2n2

ac
−2 − k2

a,y = (148b)

= constant at integration over and derivative to ω

is kept constant. Due to the integration over ω, the ray becomes a
wave-packet, which is limited in time, and moving along the path
of the ray.

The four variables ke,y, kr,y = −ke,y, α, and β are showing up in
the exponents of (147). We expand these four quantities in Taylor-
series around central values k(0)

x and ω(0). We assume that the
Fourier-amplitude Ĝe is differing significantly from zero only in
such a small neighborhood of k(0)

x and ω(0), that the Taylor-series
may be truncated in good approximation after the linear term.
Thus we get e. g. for ke,y:

ke,y(kx, ω) = ke,y(k(0)
x , ω(0)) + (kx − k(0)

x ) dke,y
dkx

∣∣∣∣
k

(0)
x

+

+ (ω − ω(0)) dke,y
dω

∣∣∣∣
ω(0)

(149)

In this approximation, the equations (147) become:

Ẽe = ei
(
k

(0)
x x+k(0)

e,yy−ω(0)t
) +∞∫
−∞

dkx
2π

+∞∫
−∞

dω
2π Ĝe ·

· ei
([
kx−k(0)

x

][
x+y dke,y

dkx

]
−
[
ω−ω(0)

][
t−y dke,y

dω

])
(150a)
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Ẽr = ei
(
k

(0)
x x+k(0)

e,yy−ω(0)t+α(0)
) +∞∫
−∞

dkx
2π

+∞∫
−∞

dω
2π Ĝe ·

· ei
([
kx−k(0)

x

][
x+y dke,y

dkx
+ dα

dkx

]
−
[
ω−ω(0)

][
t−y dke,y

dω −
dα
dω

])
(150b)

Ẽt = ei
(
k

(0)
x x+(y−d)k(0)

e,y−ω(0)t+β(0)
) +∞∫
−∞

dkx
2π

+∞∫
−∞

dω
2π Ĝe ·

· ei
([
kx−k(0)

x

][
x+(y−d) dke,y

dkx
+ dβ

dkx

]
−
[
ω−ω(0)

][
t−(y−d) dke,y

dω −
dβ
dω

])
(150c)

It is understood that the derivatives with respect to kx and ω shall
be taken at k(0)

x and ω(0), respectively. The exponential functions,
which are shifted out of the integrals, are describing infinitely
extended plain waves with the high wave-number k(0)

x , k
(0)
e,y and the

high frequency ω(0). The integrals are describing the amplitude
modulation of these waves with the low wave-number kx − k(0)

x

and the low frequency ω − ω(0), thus defining wave-packets which
are limited in space and time. At the boundary surfaces of the
materials (i. e. at y = 0 and y = d) the wave-packets have their
maxima at those x-values and at those t-values, at which the
exponential functions under the integrals assume their maximum
values (i. e. one). The exponential functions assume the value one,
when the red emphasized brackets in (150) are zero.

The peak of the incoming wave-packet arrives at time t = te,peak
the point x = xe,peak of the boundary surface y = 0. From the
exponential function of the integrand of (150a) we can read off:

xe,peak = 0 (151a)
te,peak = 0 (151b)

At time t = tr,peak the peak of the reflected wave-packet shows
up at the point x = xr,peak, y = 0 of the boundary surface. From
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(150b) we can read off:

xr,peak = − dα
dkx

∣∣∣
k

(0)
x

(151c)

tr,peak = +dα
dω
∣∣∣
ω(0)

(151d)

The peak of the transmitted wave-packet shows up at time tt,peak
at the point x = xt,peak, y = d of the other surface. From (150c)
we can read off:

xt,peak = − dβ
dkx

∣∣∣
k

(0)
x

(151e)

tt,peak = +dβ
dω
∣∣∣
ω(0)

(151f)

The phase angles α and β can be computed, using

ke = ωna
c

(152a)

kx = ke sinϑa = ωna
c

sinϑa (152b)

−kr,y = ke,y = ke cosϑa = ωna
c

cosϑa (152c)

γ =(46c) 1
ke +

√
sin2 ϑa − (nb/na)2

= 1

+

√
k2
x − (ωnb/c)2 =

= c

ωna +

√
sin2 ϑa − sin2 ϑa,critical

(152d)

and the definitions

Ka ≡ naµb cosϑa
(152c)= ke,ycµb

ω
(153a)

Kb ≡ nbµa cosϑa
(152c)= nbke,ycµa

naω
(153b)
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Wa ≡ naµb +

√
(na/nb)2 sin2 ϑa − 1 (152d)= naµbc

nbγω
(153c)

Wb ≡ nbµa +

√
(na/nb)2 sin2 ϑa − 1 (152d)= µac

γω
. (153d)

We continue to consider a symmetric layer stack na = nc > nb at
over-critical incoming angles ϑa > ϑa,critical. Using the abbrevia-
tions (153), the Fresnel-coefficients (88) become

ρab⊥ = Ka − iWb

Ka + iWb
(154a)

ρab‖ = −Kb + iWa

Kb + iWa
. (154b)

Inserting these coefficients into

ρaba =(142a) ρab(1− e−2d/γ)
1− ρ2

abe
−2d/γ (155a)

τaba =(142c) (1− ρ2
ab)e−d/γ

1− ρ2
abe
−2d/γ , (155b)

we get

τaba⊥ = ([Ka + iWb]2 − [Ka − iWb]2)e−d/γ
[Ka + iWb]2 − [Ka − iWb]2e−2d/γ

= i4KaWb

(K2
a −W 2

b )(e+d/γ − e−d/γ) + i2KaWb(e+d/γ + e−d/γ)

= i2KaWb csch(d/γ)
K2
a −W 2

b + i2KaWb cth(d/γ)

=(153) i2ke,yµbµaγ−1 csch(d/γ)
(ke,yµb)2 − (µaγ−1)2 + i2ke,yµbµaγ−1 cth(d/γ) (156a)
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ρaba⊥ =(142a) (Ka − iWb)(Ka + iWb)(1− e−2d/γ)
(Ka + iWb)2 − (Ka − iWb)2e−2d/γ

= (K2
a +W 2

b )(e+d/γ − e−d/γ)
(K2

a −W 2
b )(e+d/γ − e−d/γ) + i2KaWb(e+d/γ + e−d/γ)

= K2
a +W 2

b

K2
a −W 2

b + i2KaWb cth(d/γ)

=(153) (ke,yµb)2 + (µaγ−1)2

(ke,yµb)2 − (µaγ−1)2 + i2ke,yµbµaγ−1 cth(d/γ)
(156b)

τaba‖ = [(Kb + iWa)2 − (Kb − iWa)2]e−d/γ
(Kb + iWa)2 − (Kb − iWa)2e−2d/γ

= i4KbWa

(K2
b −W 2

a )(e+d/γ − e−d/γ) + i2KbWa(e+d/γ + e−d/γ)

= i2KbWa csch(d/γ)
K2
b −W 2

a + i2KbWa cth(d/γ)

=(153) i2ke,yµaµbγ−1 csch(d/γ)
(nb/na)2(ke,yµa)2 − (na/nb)2(µbγ−1)2+

+i2ke,yµaµbγ−1 cth(d/γ) (156c)

ρaba‖ =(142a) −(Kb + iWa)(Kb − iWa)(1− e−2d/γ)
(Kb + iWa)2 − (Kb − iWa)2e−2d/γ

= − (K2
b +W 2

a )(e+d/γ − e−d/γ)
(K2

b −W 2
a )(e+d/γ − e−d/γ) + i2KbWa(e+d/γ + e−d/γ)

= − K2
b +W 2

a

K2
b −W 2

a + i2KbWa cth(d/γ)

=(153) − (nb/na)2(ke,yµa)2 + (na/nb)2(µbγ−1)2

(nb/na)2(ke,yµa)2 − (na/nb)2(µbγ−1)2+

+i2ke,yµaµbγ−1 cth(d/γ) . (156d)
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We define the abbreviations

ke,y⊥ ≡
µb
µa

ke,y , ke,y‖ ≡
n2
bµa
n2
aµb

ke,y , (157)

and compute the phase angles β and α:

τaba⊥
(156a)= 2KaWb csch(d/γ) [2KaWb cth(d/γ) + i(K2

a −W 2
b )]

|K2
a −W 2

b + i2KaWb cth(d/γ)|2 =

= |τaba⊥| eiβ⊥ =⇒ β⊥ = arctan
( K2

a −W 2
b

2KaWb cth(d/γ)
)

β⊥
(153),(157)= π

2 − arctan
(2γke,y⊥ cth(d/γ)

γ2k2
e,y⊥ − 1

)
(158a)

ρaba⊥
(156b)= K4

a −W 4
b − i2(K3

aWb +KaW
3
b ) cth(d/γ)

|K2
a −W 2

b + i2KaWb cth(d/γ)|2 =

= |ρaba⊥| eiα⊥ =⇒ α⊥ = arctan
(−2(K3

aWb +KaW
3
b ) cth(d/γ)

K4
a −W 4

b

)
α⊥

(153),(157)= − arctan
(2γke,y⊥ cth(d/γ)

γ2k2
e,y⊥ − 1

)
(158b)

τaba‖
(156c)= 2KbWa csch(d/γ)[2KbWa cth(d/γ) + i(K2

b −W 2
a )]

|(K2
b −W 2

a ) + i2KbWa cth(d/γ)|2 =

= |τaba‖| eiβ‖ =⇒ β‖ = arctan
( K2

b −W 2
a

2KbWa cth(d/γ)
)

β‖
(153),(157)= π

2 − arctan
(2γke,y‖ cth(d/γ)

γ2k2
e,y‖ − 1

)
(158c)

ρaba‖
(156d)= −K4

b +W 4
a + i2(K3

bWa +KbW
3
a ) cth(d/γ)

|K2
b −W 2

a + i2KbWa cth(d/γ)|2 =

= |ρaba‖| eiα‖ =⇒ α‖ = arctan
(2(K3

bWa +KbW
3
a ) cth(d/γ)

−K4
b +W 4

a

)
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α‖

(153),(157)= − arctan
(2γke,y‖ cth(d/γ)

γ2k2
e,y‖ − 1

)
(158d)

As the phase angles have the same form at perpendicular and
at parallel polarization, the computations can be done with the
general parameters α, β, and ke,y. As α and β are differing only
by a constant term, we conclude from (151)

xr,peak = xt,peak and tr,peak = tt,peak . (159)

The derivative of α with respect to kx is

dα
dkx

= − 1

1 +
(

2γke,y cth(d/γ)
γ2k2

e,y−1

)2 · 2
[

(γ2k2
e,y − 1) ·

·
(

dγ
dkx ke,y cth(d/γ) + γ

dke,y
dkx cth(d/γ) + γke,y

d cth(d/γ)
dkx

)
−

(γ2k2
e,y − 1)2

−2
(
γ dγ

dkx k
2
e,y + γ2ke,y

dke,y
dkx

)
γke,y cth(d/γ)]

=

= − 2
(γ2k2

e,y − 1)2 +
(
2γke,y cth(d/γ)

)2 · [

− (γ2k2
e,y + 1) ke,y cth(d/γ) dγ

dkx
−

− (γ2k2
e,y + 1) γ cth(d/γ) dke,y

dkx
+

+ (γ2k2
e,y − 1) γke,y

d cth(d/γ)
dkx

]
. (160)

Inserting the differential quotients

dγ
dkx

=(152d) −kx · [k2
x − (ωnb/c)2]−3/2 = −kxγ3 (161a)
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dke,y
dkx

=(148b) −kx[ω2n2
ac
−2 − k2

x]−1/2 = − kx
ke,y

(161b)

d cth(d/γ)
dkx

=
( d/γ

sinh(d/γ)
)2
· (−1)

d
· (−kxγ3) (161c)

into (160) gives

xr,peak
(151c)= − dα

dkx
(158)= − dβ

dkx
(151e)= xt,peak =

= + 2
(γ2k2

e,y − 1)2 +
(
2γke,y cth(d/γ)

)2 · [
+ (γ2k2

e,y + 1) kxγ3ke,y cth(d/γ) +

+ (γ2k2
e,y + 1) γ kx

ke,y
cth(d/γ) +

+ (γ2k2
e,y − 1) γke,y

γ3kx
d
·
( d/γ

sinh(d/γ)
)2]

(162)

=d�γ 0 due to cth−2

=d�γ
2(γ2k2

e,y + 1)(γ3ke,ykx + γkxk
−1
e,y)

(γ2k2
e,y − 1)2 +

(
2γke,y

)2
Remarkably this result is strictly independent of d, and finite, at
d� γ. Thus there is a saturation effect.
At ϑa = ϑa,critical we have d � γ for any finite d, because

γ = (152d) is diverging at ϑa = ϑa,critical. The factor cth(d/γ) in
the denominator can not compensate the high powers of γ in the
numerator. A further divergence, which is of no interest for our
present evaluation, is encountered at ϑa = π/2 due to the factor
ke,y in the denominator.

For a numeric analysis of (162) we choose na = 1.5 (glass), nb = 1
(air), ω = 3 · 1015 Hz (red light with wavelength = 633 nm in air).
We assume that the light is perpendicular polarized. In this case
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ke,y⊥

(157)= ke,y due to µa = µb. The bottom diagram of fig. 20 on
the following page is showing the dependency of xr,peak = xt,peak
from the angle ϑa at constant d = 1µm. The critical angle is
ϑa,critical = 0.23228π, and the smallest angle displayed in the
diagram is ϑa = 0.23230π. The largest angle displayed in the
diagram is ϑa = 0.49656π. Note the logarithmic scale of the y-
axis.
The top diagram in fig. 20 is showing xr,peak = xt,peak at con-

stant ϑa = 0.23228π for some values of the distance d. Note the
logarithmic scale of the x-axis. At d ≈ 10µm the saturation value
of xpeak ≈ 9µm is reached.
Inserting the derivatives

dγ
dω =(152d) [k2

x − (ωnb/c)2]−3/2ωn
2
b

c2 = γ3ωn2
b

c2 (163a)

dke,y
dω =(148b) ωn2

a

c2ke,y
(163b)

d cth(d/γ)
dω = −

( d/γ

sinh(d/γ)
)2
· γ

3ωn2
b

dc2 (163c)

instead of the derivatives with respect to kx into (160), we find

tr,peak
(151d)= +dα

dω
∣∣∣
ω(0)

(158)= +dβ
dω
∣∣∣
ω(0)

(151f)= tt,peak =

= 2
(γ2k2

e,y − 1)2 +
(
2γke,y cth(d/γ)

)2 · [

(γ2k2
e,y + 1) ke,y

γ3ωn2
b

c2 cth(d/γ) +

+ (γ2k2
e,y + 1) γ ωn2

a

c2ke,y
cth(d/γ) +

+ (γ2k2
e,y − 1) γ4ke,y

ωn2
b

dc2

( d/γ

sinh(d/γ)
)2]

(164)
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Fig. 20 : The shift xr,peak = xt,peak
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=d�γ 0 due to cth−2

This result has the same form as the formula for xr,peak = xt,peak.
Again there is the divergence of γ at the critical angle ϑa,critical,
and again there is a saturation effect at d� γ.
The result (164) is displayed in fig. 21 on the next page for

the parameters na = 1.5 (glass), nb = 1 (air), ω = 3 · 1015 Hz
(red light with wavelength = 633 nm in air) and perpendicular
polarization. The bottom diagram is displaying the dependency
of tr,peak = tt,peak on the angle ϑa at constant d = 1µm. The
critical angle is ϑa,critical = 0.23228π, the smallest angle displayed
in the diagram is ϑa = 0.23230π. The largest angle displayed in
the diagram is ϑa = 0.49656π. Note the logarithmic scale of the y-
axis.

The top diagram of fig. 21 is showing tr,peak = tt,peak at constant
ϑa = 0.23228π for some values of the distance d. Note the log-
arithmic scale of the x-axis. At d ≈ 15µm the saturation value
of tpeak ≈ 30 · 10−15s is reached. This is the strangest result of
our whole evaluation. Messages could be forwarded due to certain
sequences of light pulses. For each pulse emitted at y = 0, the
receiver could detect a pulse at y = d about 30 fs later, no matter
how large d may be! Of course the received light-pulses would be
only tiny (i. e. exponentially damped) as compared to the sent
pulses. But the sender could apply extremely huge signal levels.
There is a not yet settled dispute, whether really messages could
be transmitted by means of evanescent pulses at a speed exceeding
the speed of light in vacuum. A worth reading review on this issue
can be found in [11].
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Fig. 21 : The delay tr,peak = tt,peak
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