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The three types of entropy
Gerold Gründler 1

Under the notion entropy, which is of fundamental importance
for thermodynamics and statistics, actually three concepts with
significant differences are subsumed. Use of the identical name
for different types of entropy resulted into appreciable confusion
in the literature. In this article the basic features of the three
conceptions are reviewed, and their differences are pointed out.
We comment on Landauer’s suggestion, to unite the various
types of entropy to just one “total” entropy.
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1. Introduction

The concept of entropy is a cornerstone in the foundations of
thermodynamics and statistics. Actually three variants of entropy,
with significant differences, are subsumed under this name, and
all three are in use by today. The first type of entropy has been
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conceived by Clausius [1, 2] in the eighteen-fifties. About twenty
years later, Gibbs[3] introduced a basic change into the definition of
this notion. Probably Gibbs was not aware that he was significantly
deviating from Clausius’ concept; in any case the split of concepts
was not appropriately discussed in the literature, thus the confusion
started.
When Shannon analyzed the information content of signals by

end of the nineteen-forties, and conceived a function for the quan-
titative description of the “choice” or “uncertainty” of information,
famously v.Neumann suggested to name this function entropy,
“because anyway nobody knows what entropy is.” Instead of clar-
ifying the issue and removing the confusion, which v.Neumann
ironically — but correctly — stated in this anecdote, Shannon
increased it by adding a third concept of entropy, again with
significant differences versus the older definitions.

Of course there is much common ground and overlap between the
three entropy concepts; otherwise they would have never made their
way into the textbooks under a unique name. But the differences
are substantial.

The three different types of entropy can be classified with regard
to the objects, to which the entropy is assigned:

object type interpretation
of the object

(ta)-entropy tangible analog
(td)-entropy tangible digital
(id)-entropy information digital

Tab. 1: The three types of entropy

Thus in this nomenclature the characters in brackets are indicating
the classification criteria. The objects are often called “systems”.
Tangible systems are aggregates of matter, like e. g. a solid, or some
gas enclosed in a vessel. Information, on the other hand, may be a
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signal, or a stream of signals, arriving from a telecommunication
line, or it may be carried by a sequence of characters written in a
book. Not the voltage of the communication line, and not the ink
marks on the paper, but the meaning which the reader assigns to
the voltage or to the characters are the information. Information
is residing on an ontological meta-level, different from the level of
tangible objects.
To understand what is meant by analog versus digital interpre-

tation of an object, look at this example:

A A A A A A A (1a)

It’s easy to see that these seven connected2 graphs all are different.
To document the graphs and their differences, we could for example
overlay the graphs with a fine coordinate grid, and compile in a
list which squares of the grid are black, and which are white. This
would be an analog interpretation of the graphs.

In contrast, in a digital interpretation we may arbitrarily define,
that each of these seven graphs is nothing but a representation of
the character 0100 0001 of the 8-bit ASCII code, i. e. the capital
Latin letter A . In an alternative digital interpretation we may
arbitrarily define that

A codes for e , A codes for n , A codes for t , A codes for r ,
A codes for o , A codes for p , A codes for y , (1b)

and thereby interpret the seven graphs as

(1a) = entropy . (1c)

2 A graph is connected, if from any black point of the graph in a paper print
any other black point of this graph can be reached without crossing a white
gap.
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The graphs (1a) are sufficient for an analog interpretation (the
coordinates list of the pixels). But you can not arrive at the digital
interpretation (1c), unless you have both the graphs (1a) and the
rules (1b) available. Generally speaking: An analog interpretation
of an object is fully determined by the object itself, while any
digital interpretation of the same object is only determined by the
combination of that object and some interpretative rules.
There exists no (ia)-entropy, because that combination would

be a contradiction in itself. Signals are pieces of transmitted
information. Without digital interpretation, what is received from
a telecommunication line would be a “varying voltage”, but not a
“signal”. Information rests in any case on the digital interpretation
of some object.

As (id)-entropy is the only type of entropy with an (i), one might
be inclined to abbreviate the nomenclature to (i)-entropy, the more
so as (id)-entropy is conventionally called information-entropy. I
will not do that in this article, however, for two reasons: First, I
think it is an advantage to have the structure as outlined in table
1 at any time visible. Second, I will use in the sequel “(d)-entropy”
as an abbreviation for “(td)- and (id)-entropy”, and “(t)-entropy”
as an abbreviation for “(ta)- and (td)-entropy”.

The (t) of (t)-entropy, standing for “tangible”, may alternatively
be read as “thermodynamic”, because both (ta)-entropy and (td)-
entropy have been conceived within the framework of thermody-
namics. The interpretation of (t) as “tangible” has the advantage,
however, to emphasize the essential physical difference between the
concepts of the two types of (t)-entropy and the concept of (id)-
entropy: (ta)-entropy and (td)-entropy are assigned to tangible
objects, while (id)-entropy is assigned to information (which may
be information about the state of a tangible object).
Looking at the references, the reader might get the impression

that this is an article about the history of physics, given the many
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citations from the 19th and 20th century. That impression would
be completely wrong. Instead I aim — for the benefit of scientists
(and students !) in the 21st century — to reduce as good as possible
the confusion about the meaning of entropy. This aim, I think, can
best be reached by tracing the splits between the various concepts
of entropy in historical perspective.

I will start in section 2 with the introduction of (ta)-entropy due
to Clausius [1, 2] in the framework of phenomenological thermody-
namics, and the (not fully successful) extension of this notion to
statistical thermodynamics due to Boltzmann [4]. The step to (td)-
entropy, by which Gibbs [3] removed the problems of Boltzmann’s
attempt, is discussed in section 3 . In section 4 Shannon’s [5] (id)-
entropy is treated, which extended the notion of entropy beyond
the range of thermodynamics. (Actually Gibbs [7] had already
initialized a good part of this extension.) Landauer’s [6] suggestion
to unite thermodynamic entropy and information entropy to just
one type of entropy is discussed in section 5 . Eventually in section
6 the findings and conclusions of this article are briefly compiled,
with a short outlook to the interpretation of quantum theory.

2. (ta)-entropy

Thermodynamics are characterized by the delicate balance between
a symmetry and an asymmetry. The symmetry is the homogeneity
of time, which according to Noether’s theorem [8] implies the
conservation of energy.

The first law of thermodynamics:
dU = δQ+ dW (2)

Here U is the inner energy of the considered system. Q is the heat,
and W — usually read as “work” — are all other forms of energy
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except of heat, which the system exchanges3 with the environment.
While the first law imposes no restrictions onto transformations

between the various forms of energy, experience shows that other
forms of energy can be 100% transformed into heat, but heat can
not be 100% transformed into other forms of energy. In the words
of Kelvin [9]:

“It is impossible, by means of inanimate material agency,
to derive mechanical effect from any portion of matter
by cooling it below the temperature of the coldest of the
surrounding objects.”

This implies an inhomogeneity of time: While the total energy
content of a closed system is constant, the share of heat may
increase with increasing time, but it will never decrease. The
apparent contradiction is only an artifact, however, caused by the
inadequacy of the human perspective. Maxwell [10, pp. 153, 154]
explains:

(3)

“If heat in a body consists in a motion of its parts, and
if we were able to distinguish these parts, and to guide
and control their motions by any kind of mechanism,
then by arranging our apparatus so as to lay hold of
every moving part of the body, we could, by a suitable
train of mechanism, transfer the energy of the moving
parts of the heated body to any other body in the form
or ordinary motion. The heated body would thus be
rendered perfectly cold, and all its thermal energy would
be converted into the visible motion of some other body.
Now this supposition involves a direct contradiction

to the second law of thermodynamics, but is consistent
with the first law. The second law is therefore equivalent

3 We apply the convention that energy, which is fed from outside into the
system, gets a positive sign (Q > 0, W > 0), while energy, which the system
feeds towards the environment, gets a negative sign (Q < 0, W < 0).
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to a denial of our power to perform the operation just
described, either by a train of mechanism, or by any
other method yet discovered. Hence, if the heat of a body
consists in the motion of its parts, the separate parts
which move must be so small or so impalpable that we
cannot in any way lay hold of them to stop them.”

Thus, if we were able to observe and control kinetic energy on
the molecular scale as easily as on the macroscopic scale, then no
human being would ever have invented the notion “heat”. Instead
we would observe that kinetic energy is merely shuffled between
various degrees of freedom of matter. A fortiori no human being
would ever have stated the second law of thermodynamics. Instead
the homogeneity of time would be reflected undisturbed in all
theories of classical physics.4
Clausius searched for a precise quantitative description of the

asymmetry in the transformations between heat and other forms
of energy. Due to analysis of the cyclic Carnot process [11], he
detected that not the heat Q, but the quotient heat divided by
temperature Q/T is the crucial quantity. He defined [1, 2] the (ta)-
entropy S due it’s infinitesimal change:

dS = δQ

T

∣∣∣∣
rev

= (ta)-entropy change of a system,
which reversibly exchanges3 the
heat δQ with a bath of tempera-
ture T

(4)

Clausius used in his writings the capital Latin letter S for (ta)-
entropy, Gibbs used the lowercase Greek letter η = eta for (td)-
entropy, and Shannon used the capital Greek letter H= Eta for
(id)-entropy. I will follow in this article these conventions.

4 I will not consider in this article the intricate complications with respect to
the notion “time”, which came in due to quantum theory.
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Clausius proved that by means of the definition (4) the asymme-
try of transformations between heat and other forms of energy can
be stated as

the second law of thermodynamics:
The (ta)-entropy of a system can not decrease,
unless that decrease is compensated or over-com-
pensated by an increase of (ta)-entropy of the
environment.

dSsystem +dSbath

{
= 0 for reversible changes
> 0 for irreversible changes

(5)

Like the first law, the second law is a law of nature. It can not be de-
rived from other, more basic laws. Instead it was found by guessing,
with the guessing being guided by experimental experience.

The seven graphs (1a) were in one digital interpretation identified
as seven times the letter A, with the graphical differences being
irrelevant. In the digital interpretation (1b), the same graphs coded
for the word “entropy”. Countless further digital interpretations
could be invented. In contrast, the analog documentation, i. e. the
coordinate list of black and white patches, does not depend on
additional interpretation rules. Likewise the (ta)-entropy change

∆S = SB − SA =
B∫
A

dS (4)=
B∫

A

reversible

δQ

T
(6)

does not depend on arbitrarily defined interpretation rules. By
tracing the temperature T of the system, and it’s heat exchange Q
with the environment, different physicists will measure identical
values, if they analyze the (ta)-entropy changes in course of identical
processes. It’s a characteristic feature of an analog interpreted
property, that it can be objectively measured. We will see that the
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unique, objective measurability is a particular feature, by which
(ta)-entropy differs from both (td)-entropy and (id)-entropy.

Here a slight complication must be mentioned: Clausius empha-
sized [1, § 16] the difference

d Ω = δQ

T

∣∣∣∣
irreversible

6= δQ

T

∣∣∣∣
reversible

(4)= dS (7)

between the entropy S and the quantity Ω , which he named “not
compensated transformation” (in 19th century German: „uncom-
pensirte Verwandlung“). In an irreversible process, δQ may be
completely different from T dS . In particular, δQ may be zero,
even if T dS 6= 0 . The irreversible expansion of an ideal gas is the
paradigmatic example for that case.

Therefore the change of (ta)-entropy in course of an irreversible
process can be measured only indirectly. As∮

reversible

dS =
∮

reversible

δQ

T

(4)= 0 (8)

holds for a cyclic process, the entropy difference ∆SBA = SB − SA
does not depend on the particular path along which the system is
reversibly transformed from state A to state B . Instead SA and SB
are well-defined state functions, even though their absolute values
have not been defined. This implies that the entropy change ∆SBA
is identical for reversible and irreversible transitions from state A
to state B , notwithstanding

∫ B
A δQ/T being different for reversible

and irreversible transitions. Therefore the entropy change ∆SBA
of an irreversible transition from state A to state B can indirectly
be measured either by measuring

∫ B
A δQ/T in course of a reversible

transition A→ B or in course of a reversible transition B → A :

∆SBA,irreversible = ∆SBA,reversible = −∆SAB,reversible (9)
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Thus there is no doubt how changes ∆S of (ta)-entropy have to be
measured.

The rule for the measurement of changes of (ta)-
entropy is uniquely specified by the definition (4).
Consequently, if two physicists measure a change
of (ta)-entropy, they will in any case agree on the
result.

(10)

We will see in section 4 that changes of (id)-entropy are not objective
events, but describe changes of knowledge of an observer. Hence it
is worthwhile to make the following statement with regard to (ta)-
entropy:

If in course of a process the (ta)-entropy of a system
changes, then this change is an objective event, no
matter whether or not a physicist takes note of it.
If two physicists take note of it, they will observe
the identical value of (ta)-entropy change.

(11)

The difference between (ta)-entropy and (td)-entropy can most
clearly be demonstrated by the example of expansion and mixture
of ideal gases. We will evaluate three different processes:

A B

VL VR VL&R VL VR
VL&R

Fig. 1 : Expansion and mixture of ideal gases

¬ The left compartment (volume VL) of the vessel sketched in fig.
1A is filled by an ideal gas. The right compartment (volume
VR) is filled by an ideal gas of different kind. By pulling out
the partition, both gases are irreversibly expanded and mixed
to the volume VL&R .
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­ The left compartment of the vessel is filled by an ideal gas, and

the right compartment is filled by an ideal gas of different kind.
Both gases are reversibly expanded and mixed to the volume
VL&R due to pulling out semi-permeable pistons as displayed
in fig. 1B : The left piston is permeable for the gas from the
left compartment, but impermeable for the gas from the right
compartment, and vice versa. It’s of no relevance whether we
actually have such semi-permeable pistons available. The fact
that such semi-permeable pistons are conceivable — i. e. that
such pistons are compatible with all known laws of nature —
justifies their application in the theory of thermodynamics.

® Both compartments of the vessel sketched in fig. 1A are filled
by ideal gases of identical kind. By pulling out the partition,
the both gases are mixed and expanded to the volume VL&R .
While this is a reversible process within the continuum model of
matter, it’s an intricate question (“Gibbs’ paradox”) whether
or not this process is reversible within the molecular-kinetic
model of matter. Note that this process can not be performed
with semi-permeable pistons, because such pistons can discern
atoms and molecules of different type, but they can not discern
atoms and molecules of identical type, which merely differ by
their provenience from the left or the right compartment.

In any case we stipulate that all gases have the same pressure at
start of the processes. Furthermore the vessel is embedded in a
thermal bath of temperature T . This secures that all gases have
temperature T at any time. First we discuss the processes in the
continuum-model of phenomenological thermodynamics.
Process ¬ (irreversible mixture of two different gases, fig. 1A):

Being ideal gases, each gas behaves as if the other gas didn’t exist.
The gases do no work W upon expansion, and the temperature of
the gases does not change, as experimentally confirmed by Gay-
Lussac [12]. Consequently there is no exchange of heat Q with the
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environment:

W = 0 , Q = 0 (12)

Process ­ (reversible mixture of two different gases, fig. 1B): We
exploit the equation

pV

T
= C = constant > 0 (13)

of ideal gases, to compute the work3

−W =
VL&R∫
VL

dV p+
VL&R∫
VR

dV p (13)= CLT ln VL&R
VL

+ CRT ln VL&R
VR

,

(14)

which the gases do against the pistons. Thereby the gases would
cool down, unless the heat

Q = −W = CLT ln VL&R
VL

+ CRT ln VL&R
VR

(15)

would be extracted from the bath. The (ta)-entropy change

∆S (4)= Q

T

∣∣∣∣
rev

(15)= CL ln VL&R
VL

+ CR ln VL&R
VR

, (16)

which is computed — according to Clausius’ definition (4) — from
the reversible process ­, is valid as well for the irreversible process
¬. Note that in this case

Q

T

∣∣∣∣
irreversible

(12)= 0
(16)
6= ∆S > 0 , (17)

confirming Clausius’ assertion (7).
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Process ® (mixture of identical gases): As the constants CL

and CR are independent of the chemical type of the gases, and
consequently ∆S = (16) as well is independent of the chemical
type of the gases, one might naively guess that we get again
∆S = (16) > 0 . But this is not correct. (16) has been derived
from a process, in which semi-permeable pistons were used. The
mixture with the same gas in both compartments, however, can
not be accomplished by semipermeable pistons. But the reversible
mixture can easily be accomplished with the setup fig. 1A by
simply pulling-out the partition. To reverse the mixture, we simply
shift-in the partition again. According to the ideal-gas equation,
we have before the mixture

pVR
T

(13)= CR ,
pVL
T

(13)= CL . (18a)

After the partition has been pulled out, this becomes

pVL&R
T

= p(VR + VL)
T

(13)= CL + CR . (18b)

Shifting the partition in again, we return to (18a). Shifting out
and in the partition does not change any parameter which impacts
∆S . No work needs to be done to shift the partition in or out, nor
is any heat exchanged with the environment. Hence we find the
change of (ta)-entropy

∆S = 0 (19)

upon mixture of ideal gases of same type, same pressure, and same
temperature.
Note that all changes of (ta)-entropy upon expansion and/or

mixture of gases are (in case of irreversible processes only indi-
rectly) measurable, objective quantities. We will see that this
is a particular feature of (ta)-entropy. In contrast, the values of
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changes of (td)-entropy depend on additional interpretative rules,
and changes of (id)-entropy are not at all objectively measurable.

Now we analyze the processes ¬,­,® a second time, this time
using the statistical methods of the molecular-kinetic model of
gases. In this model, the constant C in the equation (13) of ideal
gases is replaced by the product Nk of the number N of atoms or
molecules, which constitute the gas. k is the Boltzmann constant.

The molecular-kinetic model assumes, that the observable macro-
state of the gas, which is characterized by observable parameters
like the pressure p , the temperature T , and the volume V , is caused
by it’s not directly observable micro-state ∏N

j=1 xjyjzjpxjpyjpzj ,
i. e. the product of the phase coordinates of all it’s N constituent
particles.
The microstate ∏N

j=1 xjyjzjpxjpyjpzj can not be uniquely con-
cluded from the observed macrostate {p, T, V }. Instead the
macrostate usually is compatible with a huge number of different
microstates. For the entropy difference between two macrostates
B and A of the gas, Boltzmann [4] postulated

∆SBA = SB − SA = k ln LB
LA

, (20a)

with LB/LA being the quotient of the number of different mi-
crostates which are compatible with the macrostates B and A,
respectively. But what is the value of LB/LA? Boltzmann [4]
postulated

LB/LA = ΦB/ΦA (20b)

Φ =
N∏
j=1

∫ ∫ ∫
accessible

∫ ∫ ∫
dxj d yj d zj d pxj d pyj d pzj

with Φ being the phase space accessible to the gas. “Accessible”
means, that the integrals over the positions of the N atoms are
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only limited by the boundaries of the vessel, and the integrals over
their momenta are only limited by the total inner energy of the
gas.
Now we apply Boltzmann’s postulate (20) to the processes ¬

and ­ (irreversible and reversible mixture of two different gases,
fig. 1A and B): Due to expansion and mixture of the two gases,
the accessible phase space increases:

ΦL&R
(20)=

(VL&R
VL

)NL
ΦL ·

(VL&R
VR

)NR
ΦR (21)

Consequently the expansion and mixture results into this increase
of (ta)-entropy:

∆S (20)= k ln ΦL&R
ΦLΦR

(21)= NLk ln VL&R
VL

+NRk ln VL&R
VR

= (16) (22)

Thus with Boltzmann’s postulate (20), the change (16) of (ta)-
entropy as computed by the methods of phenomenological ther-
modynamics is indeed reproduced by the methods of statistical
thermodynamics.
Process ® (mixture of identical gases): As we stick to the con-

dition of same gas pressure p and same temperature T in both
compartments, we get from the ideal gas equation (18a) with
C = Nk

VL
VR

= NL
NR

(23a)

NL +NR = N , VL + VR = VL&R . (23b)

From (20) we see that the phase space accessible to the gas from
the left and right compartments increases upon removal of the
partition by the factors
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(VL&R
VL

)NL (23)=
( N
NL

)NL
(24a)(VL&R

VR

)NR (23)=
( N
NR

)NR
. (24b)

Thus after the mixture the accessible phase space is

ΦL&R
(20),(24)=

( N
NL

)NL
ΦL ·

( N
NR

)NR
ΦR , (25)

and the change of (ta)-entropy upon mixture of identical gases
becomes

∆S (20)= k ln
(ΦL&R

ΦLΦR

)
= k ln

( NN

NNL
L NNR

R

)
6= (19) . (26)

This result is different from the result ∆S (19)= 0 of phenomenological
thermodynamics! The mismatch (19) 6= (26) became well-known
under the name “Gibbs’ paradox”.
A solution (?) for Gibbs’ paradox came with quantum theory:

States of a gas, which differ merely by permutations of atoms or
molecules of same type, are one single state according to quantum
theory. Consequently Boltzmann’s formula (20) must be amended
to

∆SBA = k ln ΦB /NB!
ΦA /NA! . (27)

The result (22) for expansion and mixture of different gases is not
affected by the amendment (27), because the additional factors
NR! and NL! cancel out. But in case of mixture of identical gases
we get with Stirling’s formula lnN ! = lnNN + O(N) instead of
(26)

∆S = k ln
(NN NL!NR!
N !NNL

L NNR
R

)
N lnN�N≈ k ln 1 = 0 . (28)
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Some physicists are satisfied by this “solution” of Gibb’s paradox.
But we should be concerned, because the problem remains in case
of small N . Gibbs proposed a much better solution.

3. (td)-entropy

The difference between the entropy change ∆S 6= 0 upon mixture
of different gases, and ∆S = 0 upon mixture of identical gases
seemed perfectly natural and not at all paradox to Gibbs himself,
half a century before the advent of quantum theory. Gibbs was the
first to understand that within statistical thermodynamics only
(td)-entropy, but not (ta)-entropy, can be consistently defined:5

According to Clausius’ definition (4), the change of (ta)-entropy
upon transition from state A to state B is

∆SBA
(4)=

B∫
A

reversible

δQ

T
. (29a)

Boltzmann had replaced this by

∆SBA
(20)= k ln LB

LA
= k ln ΦB

ΦA
, (29b)

which later had been amended to

∆SBA = k ln LB
LA

(27)= k ln ΦB /NB!
ΦA /NA! , (29c)

with L being the number of different microstates, which are com-
patible with the observed macrostate. The essential point is not the
question whether L ∼ Φ or L ∼ Φ/N ! or L ∼ whatever is correct.
5 I became aware of this fact due to a beautiful article by Jaynes [13].
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Instead the essential point — which Gibbs noticed but Boltzmann
had overlooked — is, that δQ/T in (29a) is an objectively and
uniquely measurable quantity, i. e. an analog interpreted quantity.
In contrast, the number L is not an analog, objectively measurable
quantity. L is not an analog quantity, because the “state”, which
is assigned to a system, is not an analog property of the system.
In fact the state is assigned to the system according to arbitrarily
defined, digital criteria.
To make this concrete, let’s assume that we used Argon as an

(almost) ideal gas in the mixing experiment of two identical gases.
Now consider this scenario: When we filled Argon into the vessel
before start of the gas-mixing experiment, the Argon bottle was
almost empty when the left compartment was filled. Therefore
we took the Argon for the right compartment from a new bottle.
After the experiment, looking again onto the labels of the bottles,
we suddenly become aware that the first bottle was filled with
high-purity 36Ar , while the second bottle is filled with high-purity
40Ar . Thus we had at start of the experiment pure 36Ar in the
left compartment and pure 40Ar in the right compartment. After
removal and re-insertion of the partition, we now have in both
compartments a mixture of 36Ar and 40Ar .
Does this mean that our previous result (28) is wrong? Gibbs

understood that this question can not be reasonably answered by
a simple yes or no. Instead the answer depends on an arbitrary
definition. Like in one digital interpretation of the seven graphs
(1a) the objective differences are irrelevant, and all seven graphs
code for the letter A, while in another digital interpretation the
differences are important and have the meaning stated in (1b), we
can (and must!) as well decide for an arbitrary definition when
assigning a “state” to the gas:
In the gas mixing experiments we can control parameters like
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the pressure p the temperature T the volume V
the chemical type µ the isotope type ζ

of the gas. It is our arbitrary decision, whether we want to define
more or less or other parameters as “relevant”. If we decide for
{p,T ,V ,µ}, then the state of the Argon gas after mixture and re-
insertion of the partition is identical by definition to it’s state before
the experiment, and the change of (td)-entropy upon mixture is

∆η = 0 . (30a)

If we declare {p,T ,V ,µ, ζ} as relevant criteria, however, then we
assign to the gas different states before and after the mixture. We
may imagine that we have semi-permeable pistons available, which
are permeable only for 36Ar or permeable only for 40Ar . When
the gas is reversibly expanded by means of these pistons, it does
the work3

−W (14)= NLkT ln VL&R
VL

+NRkT ln VL&R
VR

, (30b)

and thereby absorbs from the bath the heat3

Q = −W . (30c)

Thus the (td)-entropy of the gas increases by

∆η = Q

T
= NLk ln VL&R

VL
+NRk ln VL&R

VR
. (30d)

Note that the heat Q = (30c) is absorbed only if the gases are
expanded by the semi-permeable pistons. If we expand the gases
by pulling out the partition, then they do not absorb heat upon
mixture (remember the experiment of Gay-Lussac). Thus, if we
hadn’t read the labels of the Ar bottles after the experiment, we
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would have never noticed that different isotopes of Argon have been
used, even if we had controlled the process by sensitive calorimeters.

By an arbitrary digital definition, we decide for the state function
{p,T ,V ,µ}, or {p,T ,V ,µ, ζ}, or whatever. As the state function
determines the number L of microstates which are compatible with
that state, and consequently the entropy (29b) resp. (29c), this
means that we actually have switched from (ta)-entropy to (td)-
entropy.

One might object: Why should we arbitrarily ignore a parameter
like ζ (the isotope type)? Should we not in any case assign to
any system that unique state function, which is complete and
objectively correct? The important answer is:

That “unique, complete, objectively correct”
state function does not exist!

That is exactly, what we can learn from the 36Ar / 40Ar isotope
example. Gibbs knew nothing about isotopes. Hence he was during
all his lifetime unable to write down an objectively complete and
correct state function of gases or any other type of matter. And
we? Can we be sure that future scientist will not detect properties
of matter which are unknown to us? Gibbs envisaged that a
chemical element X might — unknown to us — actually consist
of two different types of atoms Xa and Xb, and that Xa would
react with a yet unknown element Y , but be inert against a yet
unknown element Z, while Xb would react with Z, but be inert
against Y . And he envisaged that objectively different types of
gases might be so similar, that only future scientists will be able
to discern them due to advanced technology. These are Gibbs’
considerations [3, part I, pp. 228 – 229]:

“Now we may without violence to the general laws of
gases which are embodied in our equations suppose other
gases to exist than such as actually do exist, and there
does not appear to be any limit to the resemblance which
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there might be between two such kinds of gas. But the
increase of entropy due to the mixing of given volumes
of the gases at a given temperature and pressure would
be independent of the degree of similarity or dissimilar-
ity between them. We might also imagine the case of
two gases which should be absolutely identical in all the
properties (sensible and molecular) which come into play
while they exist as gases either pure or mixed with each
other, but which should differ in respect to the attrac-
tions between their atoms and the atoms of some other
substances, and therefore in their tendency to combine
with such substances. In the mixture of such gases by dif-
fusion an increase of entropy would take place, although
the process of mixture, dynamically considered, might
be absolutely identical in its minutest details (even with
respect to the precise path of each atom) with processes
which might take place without any increase of entropy.”

Gibbs understood that we run into absurdities, if we cling to (ta)-
entropy in the molecular-kinetic theory of matter: We can never
be sure that two states of a system, which seem identical to us,
really are “objectively” identical. The notion of entropy becomes
applicable only if we at some point of our considerations declare two
states of a system identical by definition, whether or not objective
differences between these two states may be known by today or
might be detected in future. This of course means: The notion of
entropy becomes applicable only if we switch from (ta)-entropy to
(td)-entropy.

Note that these considerations only apply in the range of statisti-
cal thermodynamics. Clausius’ definition (29a) of (ta)-entropy rests
on the uniquely measurable (analog) quantities Q and T , and there
is no problem with these quantities in the range of phenomeno-
logical thermodynamics. But in statistical thermodynamics, the
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definition (29b) resp. (29c) of entropy rests on the number L of
different microstates which are compatible with the macrostate of
the system. When assigning a state to the observed system, we
are facing problems, because there may exist many parameters,
either unknown to today physics or so hard to measure that we
arbitrarily decided to ignore them, which would be indispensable
for a “complete” description of the state.

Of course Boltzmann had declared the phase coordinates of the
single molecules as irrelevant parameters, and thereby implicitly
made a first, important step towards (td)-entropy. But only Gibbs
understood that there are many further parameters, which unavoid-
ably must be declared irrelevant, to make the concept of entropy
applicable within statistical thermodynamics.
It is impossible to assign a state to a system without selecting

arbitrarily a finite set of parameters, declare them as the only
relevant parameters, and base the definition of the state onto
this incomplete selection. Gibbs comments succinctly: “It is to
states of systems thus incompletely defined that the problems of
thermodynamics relate.” [3, part I, p. 228] Consequently — to stay
consistent — we must switch from (ta)-entropy to (td)-entropy as
soon as the definition of entropy rests on the definition of “states”.
This is an important characteristic of (id)- and (td)-entropy:

Whenever we assign a value of (d)-entropy to a system, we confine
our attention to a finite, arbitrarily chosen number of it’s properties
which we call the relevant properties, and ignore all it’s other
properties:

(31)

The criteria, according to which (d)-entropy is computed,
are defined arbitrarily by the physicist. Consequently dif-
ferent observers may correctly assign completely different
(d)-entropies to the identical system at the same point of
time, if they defined different relevant criteria.
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“Gibbs’ paradox” of (ta)-entropy has been resolved (by taking

into account the permutability of molecules of same type) only in
the limit N lnN � N , see (28). For small particle numbers, the
problem remains until today. In the framework of (td)-entropy,
however, we are free to fix by arbitrary definitions whether ob-
jectively different states are to be considered equal, or not. That
means that we are free to define that it is of no relevance whether
an atom, which after mixing and re-partition of a gas is in the left
compartment, has been in the left or in the right compartment
before the experiment. This formally means that we are free to
replace the (ta)-entropy formula

∆SBA
(27)= k ln ΦB /NB!

ΦA /NA! (32a)

by the (td)-entropy formula

∆ηBA = k ln ΦB /N
NB
B

ΦA /N
NA
A

, (32b)

which gives results in accord with phenomenological thermodynam-
ics for all discussed examples of gas expansion and gas mixture,
including gases of low particle number.

Gibbs appends to these considerations a somewhat cryptic remark
[3, part I, p. 229]:

“Again, when such gases have been mixed, there is no
more impossibility of the separation of the two kinds
of molecules in virtue of their ordinary motions in the
gaseous mass without any especial external influence,
than there is of the separation of a homogeneous gas into
the same two parts into which it has once been divided,
after these have once been mixed. In other words, the
impossibility of an uncompensated decrease of entropy
seems to be reduced to improbability.”
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Jaynes [13] undertook “the decipherment of this into plain English”,
and proposed this translation:

“It might happen without any intervention on our part
that in the course of their motion the molecules which
came from V1 all return to it at some later time. Such an
event is not impossible; we consider it only improbable.
Now a separation that Nature can accomplish already
in the case of identical molecules, she can surely accom-
plish at least as easily for unlike ones. The spontaneous
separation of mixed unlike gases is just as possible as
that of like ones. In other words, the impossibility of an
uncompensated decrease of entropy seems to be reduced
to improbability.”

Note that this mutation of the second law of thermodynamics from
a deterministic law to a merely probabilistic law did not come in
due to Gibbs’ move from (ta)-entropy to (td)-entropy. Instead it
came in due to the move from the continuum theory of matter,
onto which Clausius’ original definition of entropy is based, to the
molecular-kinetic theory of matter in the work of Boltzmann and
Gibbs.

For the mixture of two different ideal gases we computed above
the entropy increase

∆η (30d)= NLk ln VL&R
VL

+NRk ln VL&R
VR

. (33)

The probability P “of the separation of the two kinds of molecules
in virtue of their ordinary motions in the gaseous mass without
any especial external influence” is

P =
( VL
VL&R

)NL
·
( VR
VL&R

)NR VL≈VR≈
(1

2
)NL+NR

. (34)

This complete de-mixing with uncompensated entropy decrease
∆η = −(33) would of course be the most extreme case. A much
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less pronounced partial de-mixing would already be observable.
Considering (34), we get — instead of the deterministic second
law (5) of phenomenological thermodynamics — in the statistical
theory this probabilistic form of

(35)

the second law of thermodynamics:
The probability P of a significant decrease of (td)-
entropy, which is not compensated or over-compensated
by an increase of (td)-entropy of the environment of
the considered system, is by order of magnitude

P ≈ 2−N ,

with N being the number of constituent particles of
the system.

Thus a realistic chance to observe an uncompensated decrease of
(td)-entropy exists only if the particle number N of the evaluated
system is very small in comparison with Avogadro’s number 6 ·1023.
Actually the experimental proof that the probabilistic law (35) —
but not the deterministic law (5) — is correctly describing the
world in which we are living, was on the table — but not yet under-
stood by anybody — since 1828 . In that year Brown [14] observed
the erratic “Brownian motion” of tiny (just visible in the optical mi-
croscope) particles suspended in water. Only in 1905 Einstein [15]
presented the correct explanation: Due to rare, but not impossible
spontaneous fluctuations of (td)-entropy, a significant share of the
water molecules nearby the particle, which normally move fully
disordered (thermodynamic equilibrium), by chance moves into
one common direction (spontaneous decrease of thermodynamic
entropy), transferring macroscopic visible momentum to the parti-
cle. Thus in this phenomenon chance is doing, what intentionally
only Maxwell’s demon (compare (3) !) is able to do: To cool a part
of the water to a temperature which is lower than the temperature
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of the surrounding water (and lower than the temperature of the
macroscopic particle, which is in thermodynamic equilibrium with
the surrounding water), thereby transforming some heat of the
water into macroscopic kinetic energy.

Besides the move from (ta)-entropy to (td)-entropy, Gibbs intro-
duced [7, chap. IV] this further improvement: Boltzmann’s entropy
formula

S
(20a)= k lnL (36)

assumes the same probability

pj = 1
L

for j = 1, 2, 3, . . . L (37a)

for all L microstates, which are compatible with the observed
macrostate. This assumption gives good results in case of an ideal
gas, but it is a poor assumption when interactions between the
constituent particles of the system are not negligible. To adapt
(36) to cases with different pj , we write L — still assuming (37a)
— as

L = LL/L
(37a)=

( 1
pj

)Lpj

=
L∏
j=1

p
−pj

j . (37b)

Thereby we get the entropy

η
(36)= k ln

( L∏
j=1

p
−pj

j

)
= −

L∑
j=1

kpj ln pj . (38a)

Now we can skip the inflexible assumption (37a), and may in-
stead insert probabilities pj which better fit the considered system,
provided that
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L∑
j=1

pj = 1 (38b)

is respected. Jaynes [16] proved that Gibbs’ statistical formula
(38) reproduces indeed the results of Clausius’ entropy definition
(4) under quite general conditions, provided that the probability
distribution pj is chosen appropriately.

4. (id)-entropy

Consider a variable X, which can assume the n different discrete
values {x1, . . . , xn}. X may for example be the result of throwing
a die (then n = 6 for a conventional die), or the result of tossing a
coin (then n = 2), or the signal (or a sequence of signals) received
from a telecommunication line.

It will be easier to understand Shannon’s approach to information
entropy, if we upfront define the information content of a particular
value xj of the variable X . The information content of a result with
a fair die is 3× as high as the information content of a result with
a fair coin, because the result of tossing the coin can be guessed in
advance (before the coin is actually thrown and the result observed)
with probability 1/2, while the result of throwing the die can be
guessed in advance only with probability 1/6 . Obviously the
information content I(xj) should be a function of p−1

j , with pj
being the probability of X = xj :

I(xj) = function(p−1
j ) (39a)

If two observations of the variable X are independent (for example
the result xa of throwing a die, and the result xb of a later throw
with the same die), then the information content of the combined
results is additive:
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I(xa · xb) = I(xa) + I(xb) (39b)

Thus I(xj) must be a logarithmic function of xj . Following Shan-
non, we choose the logarithm to the basis 2 , and define — consid-
ering (39a) and (39b) —

I(xj) = log2 p
−1
j (40)

as information content of xj .
In his “Mathematical Theory of Communication” [5], Shannon

looked for a measure H(X) of the “choice” or “uncertainty” of an
observation of X (“how difficult is it to guess the next xj”), for
example the uncertainty of the next signal to be received from a
telecommunication line. The measure H(X) should meet these
three requirements:
∗ It should be continuous in the pj .
∗ If all pj are equal (i. e. pj = 1/n), then H should be a mono-

tonic increasing function of n, because “with equally likely
events there is more choice, or uncertainty, when there are
more possible events.”

∗ H(X) should have the same additive property (39b) as the
information content I(xj).

Shannon proved that — besides an irrelevant constant factor —
the only function which meets all three requirements is the mean
value of the information contents I(xj) of all values xj which the
variable X may assume:

H(X) =
n∑
j=1

pj I(xj)
(40)= −

n∑
j=1

pj log2 pj (41)

Here H is the capital Greek letter H= Eta. Shannon called this
quantity information-entropy, we call it in this article (id)-entropy.
Shannon evaluated the (id)-entropy of discrete and continuous
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informations. In the latter case the sum in (41) becomes an
integral. This is, however, merely a technical detail, and does not
affect the conceptual basis of (id)-entropy.

The formal equivalence of (41) with Gibbs’ formulation (38a) of
(td)-entropy is striking, as the constant factor k/ log2 e , by which
(38a) differs from (41), is clearly irrelevant in a fundamental con-
sideration. But note the physical difference: The pj in Gibb’s (td)-
entropy refer to the probability of microstates in phase space which
are compatible with the observed macrostate. By assumption of
the kinetic theory of heat, the microstate in phase-space determines
the heat content and temperature of the observed system, and
is thereby conceptually related to thermodynamic entropy (4) as
defined by Clausius. The pj in Shannon’s (id)-entropy, in contrast,
refer to the probability of the macrostates which the observed
system may assume, and these macrostates may furthermore not
at all be related to heat and temperature.
To justify the (d) = digital in the name (id)-entropy, and to

illustrate further peculiar features of this type of entropy, let’s
consider as an instructive example the (id)-entropy of a deck of 52
playing cards.6 All 52 cards have different topsides, but identical
backsides. Note that this is already a clearly digital interpretation.
The backsides of the 52 cards certainly are not strictly identical,
as could easily be proved by microscopic analysis. Like we may
arbitrarily define in a digital interpretation that the differences of
the seven graphs (1a) are irrelevant, and all seven graphs represent
the letter A, we may in a digital interpretation arbitrarily define
that the differences between the backsides of the cards are irrelevant.
The 52 backsides of the cards are in our digital interpretation
identical by definition.

The cards have many properties: Seize, thickness, weight, ma-

6 This example owes much to Toffoli’s 2016 review [17] of information-entropy.



30 The three types of entropy

AA

A A

10 10

1010 A A

AA

1010

10 10

Fig. 2 : Two cards with two different orientations

terial, . . . The one and only property of this deck, which is of
interest for our evaluation, is the order (i. e. the sequence), in which
the 52 different cards are arranged. We discern face-up orientation
from face-down orientation, and we assume that the long and short
sides of the rectangular cards are aligned in the deck. But there is
a further degree of freedom, see fig. 2 , which we arbitrarily ignore
by definition: The cards may be rotated by 180◦. This is easily
visible for cards with odd numbers (like the ace), and with some
care (microscopic analysis, if needed) it can certainly be seen for
all 52 cards.

The digital interpretation of states due to the arbitrary selective
choice of “relevant” criteria is a characteristic of (id)- and (td)-
entropy, which has been pointed out in statement (31) above.
With the deck of cards, this sequence of actions is performed:

¬ We check the order of the cards, and note it on a piece of
paper. Then the deck is put face-down onto the table, such
that the card with position 1 is at bottom, and the card with
position 52 is on top of the stack.

­ One of the cards is picked out at about 2/3 of the stack height.
We don’t look very carefully from which exact position the
card was taken, must have been somewhere in the range of
position 30 through 40. Without looking at the face of the
card, we put it back into the stack somewhere at about 1/3
of the stack height. Again we don’t carefully check the new
position of the card, certainly not below position 11, and



Astrophysical Institute Neunhof
Circular se09113, February 2018 31

certainly not above the (old) position 22. Due to this only
imprecisely controlled position change of one card, we lost
some information about the order of the deck.

We know for sure: At positions 1 through 11 and 41 through
52 the cards have not changed. Hence our list is certainly still
correct with regard to these positions. And at positions 23
through 30 now are (in unchanged sequence) the cards which
before have been at positions 22 through 29. But we have
no idea which of the cards 30 through 40 has been picked
(11 different cards are possible), and which exactly is it’s new
position (might be any of the (new) positions 12 through 22,
i. e. 11 different positions possible).
Thus, if we want to keep track of the actual state (i. e. the

actual positions of all cards) in the deck, the best we can do is
to continue the bookkeeping with 121 different lists in parallel.
One of these lists will be correct, and all 120 other lists will
be wrong. But as long as we don’t turn the cards face-up, we
can not know which one is the true list. We must keep all 121
lists, if we want to be sure to have one correct list.

® One card is picked, and replaced into the stack at a new posi-
tion. But this time we carefully trace the action: The card is
picked from position 27, and then is inserted above position 3 .
We update all 121 lists accordingly. Note that this time we
don’t need to increase the number of lists, because we didn’t
loose any information in this completely controlled action.

¯ The deck is thoroughly shuffled, and then put back face-down
onto the table. Now 52! different lists are needed to document
the actual state (i. e. the positions of the cards) of the deck.
We know that only one list is correct, and all 52! − 1 other
lists are wrong. But we do not know which one is the correct
list.

° Again one card is picked, and re-inserted at a new position.
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This time bookkeeping is simple: We don’t need to do any-
thing! With the 52! lists, at which we arrived in step ¯, we
have already reached the maximum. One of these lists will be
true, whatever further rearrangements of the order of cards
may happen.

± The card from position 37 is picked, and turned face-up. It’s
the jack of hearts. Then it is turned face-down again, and re-
inserted at it’s previous position. This time the number of
lists decreases: We only keep the 51! lists which have the jack
of hearts on position 37 , and skip all other lists.

² The deck is turned face-up. We skip all lists which don’t
match the actual order of cards, and only keep the one list
which tallies with the actual state. Then we return the deck
again face-down onto the table, without changing the order of
cards.

We will use the letter L for the number of lists needed for complete
bookkeeping of an incompletely known system, because this number
replaces in (id)-entropy the number L of microstates, which are
compatible with the observed macrostate, as defined in (td)-entropy,
see (20a). In the deck-of-cards example, we had

¬−−→ L = 1 ­−−→ L = 121 ®−−→ L = 121 ¯−−→
¯−−→ L = 52! °−−→ L = 52! ±−−→ L = 51! ²−−→ L = 1 . (42)

L is a natural number in the interval from 1 (complete knowledge) to
Lmax = total number of states accessible to the system (Lmax = 52!
in the deck-of-cards example).
The L of (id)-entropy increases whenever we loose information

about the actual state of the system, and it decreases whenever we
gain information about the actual state of the system. In contrast,
in case of (td)-entropy the number L has a tendency to increase
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permanently, unless work is done from outside to decrease L (this is
essentially the second law of thermodynamics). In thermodynamics,
the state with Lmax is called “thermal equilibrium”.

To achieve the additive property (39b), Shannon [5] defined not
L but

H = log2 L (43)

as information entropy. In (37) and (38) it was demonstrated, that
(43) is equivalent to

H =(41) −
L∑
j=1

pj log2 pj (44a)

L∑
j=1

pj = 1 , (44b)

if all of the L lists are true with same probabilities

pj = 1
L

for j = 1, 2, 3, . . . L .

In the example of the deck of cards, however, the 121 lists, which we
needed after step ­, certainly are not all true with same probability.
For example the list which assumes that the card has been picked
from position 35 and re-inserted above position 16 (that is in the
centers of the possible ranges) is certainly more probably true than
the list which assumes that the card has been picked from position
40 and re-inserted above position 11 (that is at the boundaries of
the possible ranges). Thus in the example of the deck of cards,
and in most other cases, Shannon’s general formula (44) fits better
than the particular formula (43).

Note the fundamental conceptual difference between (id)-entropy
and physical quantities like mass or electric charge: After step
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± and before step ², we ascribed to the deck of cards this (id)-
entropy:

H
(44)= −51! 1

51! log2
1

51! = log2 51! (45a)

Then, in step ², we turned the deck, kept only the one list which
matched the actual order of cards, and put the deck again face-
down onto the table. After step ² we assigned to the deck the (id)-
entropy

H
(44)= − log2 1 = 0 . (45b)

Before and after step ² we assigned different (id)-entropies to
the deck, even though the relevant property of the deck (i. e. the
order of cards) did not change. In contrast, neither (ta)-entropy
nor (td)-entropy change, unless there is an objective change of the
considered system.
Not the order of the deck has changed, but our knowledge of

the order of the deck has changed in step ². If we have complete
knowledge, then we need only 1 list, and the (id)-entropy is zero.
The value of H > 0 is a measure for the amount of information,
which we would need (but actually don’t have) for a unique descrip-
tion of the actual state of the considered system, i. e. a description
by only 1 list.

(id)-entropy is not a quantity of the considered sys-
tem. Instead (id)-entropy quantifies our missing
information about the actual state of the system.
Consequently different observers may correctly

assign completely different (id)-entropies to the
identical system at the same point of time, if their
knowledge about the system’s actual state is dif-
ferent.

(46)
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A further important difference between (id)-entropy and both

types of (t)-entropy is, that (t)-entropy tends to increase perma-
nently (this is the second law of thermodynamics), while no such
tendency exists in case of (id)-entropy. Well, there exists a faint
similarity to the second law: If the state of a system is observed
at some point of time, but in the sequel traced only theoretically,
without further observations, then the (id)-entropy which we as-
sign to that system increases, if the system develops according to
stochastic rules, or it is constant, if the system develops according
to deterministic rules. In no case will the (id)-entropy assigned to
a merely theoretically traced system decrease. This faint similarity,
however, can certainly not be considered an equivalent counterpart
to the powerful second law of thermodynamics. Instead the general
rule is:

The (id)-entropy assigned to a system decreases when-
ever we gain information about that system, and it
increases whenever we loose information about that
system. Different from (t)-entropy, decrease of (id)-
entropy is not restricted by a law of nature.

(47)

A very useful application of the concept of (id)-entropy has been
pointed out by Jaynes [18, p. 621]:

“Previously, one constructed a theory based on the equa-
tions of motion, supplemented by additional hypotheses
of ergodicity, metric transitivity, or equal a priori proba-
bilities, and the identification of entropy was made only
at the end, by comparison of the resulting equations with
the laws of phenomenological thermodynamics. Now,
however, we can take entropy as our starting concept,
and the fact that a probability distribution maximizes
the entropy subject to certain constraints becomes the
essential fact which justifies use of that distribution for
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inference.”
To illustrate the concept of turning (id)-entropy from a result of
evaluations to a starting point of evaluations, Jaynes presents this
example: We get the definitions of two different functions f(X)
and g(X) of a variable X which can assume the discrete values
{x1 . . . xn}, and are asked: What is the expectation value 〈g(X)〉?
To find out the precise answer

〈g(X)〉 =
n∑
j=1

pjg(xj) (48a)

we would need to know all n values of the probability distribution
pj . But we get none of them. Instead we only get the value of
〈f(X)〉. Thus the only two informations onto which we can base a
guess of 〈g(X)〉 are

〈f(X)〉 =
n∑
j=1

pjf(xj) (48b)

n∑
j=1

pj = 1 . (48c)

(48b) and (48c) are two linearly independent informations, so we
are missing merely n− 2 informations for the precise answer (48a).
Two informations are more than nothing. Hence we should not
simply shrug shoulders, but be able to deliver an “educated best
guess” of 〈g(X)〉. This guess will, of course, be based on our best
guess of the probability distribution pj . Jaynes [18, pp. 622, 623]
comments:

“This problem of specification of probabilities in cases
where little or no information is available, is as old as the
theory of probability. Laplace’s ‘Principle of Insufficient
Reason’ was an attempt to supply a criterion of choice,
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in which one said that two events are to be assigned
equal probabilities if there is no reason to think other-
wise. However, [. . . ] this assumption may appear just as
arbitrary as any other that might be made.
[. . . ] our problem is that of finding a probability as-

signment which avoids bias, while agreeing with whatever
information is given. [. . . ] there is a unique, unambigu-
ous criterion for the ‘amount of uncertainty’ represented
by a discrete probability distribution, which agrees with
our intuitive notions that a broad distribution represents
more uncertainty than does a sharply peaked one, and
satisfies all other conditions which make it reasonable.7
[. . . Shannon proved] that the quantity which is posi-
tive, which increases with increasing uncertainty, and is
additive for independent sources of uncertainty, is

H(p1 . . . pn) = −K
∑
i

pi ln pi , (2–3)

where K is a positive constant.
[. . . ] It is now evident how to solve the problem; in

making inferences on the basis of partial information we
must use that probability distribution which has maxi-
mum entropy subject to whatever is known. This is the
only unbiased assignment we can make; to use any other
would amount to arbitrary assumption of information
which by hypothesis we do not have.”

This reasoning became known as the maximum-entropy-principle,
or MaxEnt for brevity. To answer the question for 〈g(X)〉 by
MaxEnt, we must maximize the (id)-entropy

7 Here Jaynes inserted a footnote, referencing to Shannon’s article [5].
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H(X) (41)= −
n∑
j=1

pj log2 pj (49)

due to variation of the pj under the constraints (48b) and (48c).
Following the method found by Lagrange [19, sec. IV], the con-
straints are included due to Lagrange multipliers α and β into the
variation of H :

−δH = 0 =
n∑
j=1

δ(pj log2 pj)
(48c)
+

n∑
j=1

αδpj
(48b)
+

n∑
j=1

βδpjf(xj)

(50)

With α = (λ− 1) log2 e and β = µ log2 e this becomes

0 =
n∑
j=1

δpj
(

ln pj + pj
1
pj

+ λ− 1 + µf(xj)
)

log2 e

=⇒ pj = e−λ−µf(xj) . (51)

This gives us indeed unique values for all pj , because the two
unknown multipliers λ and µ can be determined from the two
linearly independent equations

〈f(X)〉 (48b)=
n∑
j=1

e−λ−µf(xj)f(xj) (52a)

n∑
j=1

e−λ−µf(xj) (48c)= 1 . (52b)

I will not ponder the question, whether MaxEnt is a theorem,
supported by a stringent proof, or merely a heuristic strategy. In
any case it seems very plausible that this method leads indeed to
a “probability assignment which avoids bias, while agreeing with
whatever information is given.”
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5. Just one “total” entropy?

Despite the basic conceptual differences between (td)-entropy and
(id)-entropy, Landauer postulated a close correlation between both
types of entropy. In 1961 he published an influential article [6], in
which he asserted what became well-known under the name

Landauer’s principle: If a logical operation re-
duces the information entropy of the processed
data by

∆H = −1 bit ,
then the thermodynamic entropy of the hardware,
which implements that logical operation, is reduced
by minimum

∆S = −k ln 2 .

(53a)

According to the second law of thermodynamics, the entropy reduc-
tion of the hardware must be compensated by an entropy increase
of the environment of minimum same size:

∆Sbath ≥ k ln 2 (53b)

Thus at temperature T minimum the heat3

−Q ≥ kT ln 2 (53c)

must be dissipated, and consequently according to the first law
minimum the work

W ≥ kT ln 2 (53d)

must be done, to accomplish any logical operation which reduces
the information entropy of the processed data by 1 bit.
Landauer didn’t state his theorem explicitly. Instead (53a) is

a condensed form of arguments presented in section “4. Logical
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irreversibility and entropy generation” of his article [6]. In this
section Landauer considers the example of the restore to one
operation (which gives the output one for arbitrary input bits
zero or one), and argues:

(54)

“Note that our argument here does not necessarily depend
upon connections, frequently made in other writings, be-
tween entropy and information. We simply think of each
bit as being located in a physical system, with perhaps a
great many degrees of freedom, in addition to the relevant
one. However, for each possible physical state which will
be interpreted as a zero, there is a very similar possible
physical state in which the physical system represents a
one. [. . . ]

Consider a statistical ensemble of bits in thermal equi-
librium.8 If these are all reset to one, the number of
states covered in the ensemble has been cut in half. The
entropy therefore has been reduced by k loge 2 = 0.6931 k
per bit. The entropy of a closed system, e. g., a computer
with its own batteries, cannot decrease; hence this en-
tropy must appear elsewhere as a heating effect, supplying
0.6931 kT per restored bit to the surroundings. This is,
of course, a minimum heating effect, and our method of
reasoning gives no guarantee that this minimum is in fact
achievable.”

In this argument, Landauer clearly skips the distinction between

8 From the context it is obvious, that Landauer is speaking of an ensemble
of bits, in which one and zero are showing up with approximately same
frequency. He is definitively not speaking of a system in thermal equilibrium,
in which — depending on temperature — some certain percentage of the
bits is set by chance to one and the other bits are set to zero. A computer
can only work correctly well apart from thermal equilibrium, i. e. as long as
it’s bits are not in thermal equilibrium.
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information entropy and thermodynamic entropy, which Shannon
had not yet denied. In the sequel discussion, I will go along the
account of Landauer’s point of view as presented by Frank [20].
Frank first of all defines information entropy slightly different

from Shannon’s original definition. Shannon [5] defined the in-
formation entropy of a variable C, which assumes the n different
values cj with probabilities P (cj), due to

H(C) =(41) −K
n∑
j=1

P (cj) log2 P (cj) (55)

with K = 1 and
n∑
j=1

P (cj) = 1 .

Shannon had already emphasized that his choice 1 for the constant
K is completely arbitrary. To give information entropy the same
dimension (energy/temperature) as thermodynamic entropy, Frank
decided for K = k/(log2 e) , resulting into

H(C) = − k

log2 e

n∑
j=1

P (cj) log2 P (cj) = −k
n∑
j=1

P (cj) lnP (cj)

with
n∑
j=1

P (cj) = 1 , (56a)

thereby making it formally almost identical to Gibbs’ definition

η(cj)
(38)= −k

∑
i

p(φ(j)
i ) ln p(φ(j)

i ) with
∑
i

p(φ(j)
i ) = 1 (56b)

for the thermodynamic entropy of an observable macrostate cj
which may be realized with probabilities p(φ(j)

i ) by any of the not
observable microstates φ(j)

i .
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Consider a computer which can assume n computational macro-
states cj , which again may be realized each by any of a finite set
of microstates φ(j)

i of the hardware atoms in phase space:
φ

(1)
1 , . . . , φ(1)

m︸ ︷︷ ︸
c1

, φ
(2)
1 , . . . , φ(2)

r︸ ︷︷ ︸
c2

, . . . , φ
(n)
1 , . . . , φ(n)

s︸ ︷︷ ︸
cn

Thus the cj define a discrete partition of the set of the microstates
φi. Frank concludes [20, eq. (17)] that the following relation must
hold between the probabilities P (cj) of the macrostates cj and the
probabilities p̃(φ(j)

i ) of the microstates φ(j)
i :

P (cj) =
∑
i

p̃(φ(j)
i ) (57)

Note that the p̃(φ(j)
i ) are different from Gibbs’ p(φ(j)

i ):

p̃(φ(j)
i ) (56b),(57)= p(φ(j)

i ) · P (cj) (58)

Now the following definition of total entropy seems reasonable:

S(Φ) = −k
∑
i

∑
j

p̃(φ(j)
i ) ln p̃(φ(j)

i ) =

=(58) −k
∑
i

∑
j

p(φ(j)
i )P (cj)

(
lnP (cj) + ln p(φ(j)

i )
)

=

= −k
∑
j

1︷ ︸︸ ︷∑
i

p(φ(j)
i ) P (cj) lnP (cj)︸ ︷︷ ︸

H(C)=(56a)

+

+
∑
j

P (cj)
( η(cj)=(38)︷ ︸︸ ︷
−k

∑
i

p(φ(j)
i ) ln p(φ(j)

i )
)

︸ ︷︷ ︸
η

(59)
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with η being the mean (td)-entropy.

Landauer implicitly claimed that the total entropy S(59) as de-
fined in (59) exactly matches Clausius’ thermodynamic entropy
S(4) as defined in (4), and that consequently a reduction ∆S(59) < 0
implies — due to the second law — the emission of the heat3

−∆Q (4)= −T∆S(59)
(5)= +T∆Sbath > 0 (60a)

from the system to the environment. The problem is, that Gibbs
raised the same claim for his entropy η = (38) as defined in (38),
i. e. that a reduction ∆η < 0 implies the emission of the heat3

−∆Q = −T∆η = +T∆Sbath > 0 (60b)

from the system to the environment. From (59) it is obvious that
in general ∆S(59) 6= ∆η . Hence both claims (60) can impossibly
be right (they could of course both be wrong).
The only way to disprove (60a) and/or (60b) is by experiment.

To understand why such a decisive experiment is extremely diffi-
cult, let’s evaluate eq. (59) for the example of a restore to one
operation. As Landauer assumed that zero and one bits come in
with same frequency, the total entropy S(59) of the input is

S(59), in =(59) +
(1

2 + 1
2
)
k ln 2︸ ︷︷ ︸

H(C)

+

+ 1
2
(
−k

∑
i

p(φ(zero in)
i ) ln p(φ(zero in)

i )︸ ︷︷ ︸
η(zero in)

)
+

+ 1
2
(
−k

∑
r

p(φ(one in)
r ) ln p(φ(one in)

r )︸ ︷︷ ︸
η(one in)

)
.
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The total entropy S(59) of the output is

S(59), out =(59) −k
( 0︷ ︸︸ ︷

0 ln 0 +
0︷︸︸︷

ln 1
)

︸ ︷︷ ︸
H(C)

−

−k
∑
s

p(φ(one out)
s ) ln p(φ(one out)

s )︸ ︷︷ ︸
η(one out)

.

Thus the change of total entropy S(59) upon the restore to one
operation is

∆S(59)(restore to one) =
∆H(restore to one)︷ ︸︸ ︷
−k ln 2 +

+ η(one out)− 1
2 η(one in)− 1

2 η(zero in)︸ ︷︷ ︸
∆η(restore to one)

. (61)

Lets roughly estimate this value for the usual transistor imple-
mentations of logical operations in computers. The numbers of
microstates, which are identified as a zero or one may be, say,
something like (5± 1) · 1020. Then we have

∆η(restore to one) ≈
≈ (−1 · · ·+ 1)k ln 1020 ≈ (−1 · · ·+ 1) · 67k ln 2 ≈
≈ (+1 · · · − 1) · 67 ·∆H(restore to one) .

According to this very rough estimation, the range of uncontrolled
variations of ∆η would be more than 130× as large as the change
∆H of information entropy.

In typical logical operations, |∆H| is about k ln 2 per bit. Con-
sequently ∆η must be reliably controlled down to a possible error
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� k for a significant check of (60). Thus a special hardware imple-
mentation of the logical operations is required, to make the small
contribution of ∆H to the heat dissipation visible — if it should
exist.
Here we are facing a fundamental — and perhaps unsurmount-

able — problem: Thermodynamic fluctuations, as are visible in
Brownian motion [14] and in experiments like [21,22], are as well
of order O(k). For this reason, an experimental decision between
the incompatible entropy concepts
(59), in which information entropy and thermodynamic entropy

are amalgamated to a “total entropy” as implicitly defined by
Landauer, and

(38)&(56a), in which thermodynamic entropy as defined by Clau-
sius, Boltzmann, and Gibbs, and information entropy as de-
fined by Shannon, are kept separated,

may very well be impossible forever, because the difference between
both concepts is O(k), hence masked by the unavoidable fluctua-
tions of thermodynamic entropy. In [23, sect. 4.1] experiments are
discussed, which tried to check Landauer’s entropy concept. None
of the until today reported experiments could prove (60a) and/or
(60b) wrong.

Given this experimental situation, one might argue that a pref-
erence for one of the two concepts is merely a matter of taste.
But I think that there are minimum four important arguments in
favor of the (38)&(56a) concept with thermodynamic entropy and
information entropy kept separated:
∗ With the “total entropy” concept (59), the small changes ∆H

of information entropy get in almost all (or all?) cases masked
by the much larger mean changes ∆η of thermodynamic en-
tropy. Whenever in successful evaluations of communication
theory allegedly the concept (59) has been applied, actually
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the changes ∆η have been simply ignored, but not seriously
been proved to be precisely zero or at least � k .

∗ The separate concept of information entropy is free of sponta-
neous fluctuations. Hence changes of information entropy can
with unlimited precision be traced down to ∆H = 0 . This
important advantage gets lost with the total entropy concept
(59), which is unavoidably affected by thermodynamic fluctua-
tions.

∗ In the concept of a separate information entropy, there exists
no counterpart for the second law of thermodynamics. There
is no restriction for ∆H < 0 processes.

∗ The second law of thermodynamics is about the exchange
of heat between the considered system and it’s environment.
And in the Boltzmann/Gibbs conception, the thermodynamic
entropy is proportional to the logarithm of the number of mi-
crostates in the phase space of the atomic constituents of the
considered system, which all are compatible with the observed
macrostate. The microstates in phase space determine — by
assumption of the kinetic theory of heat — the heat content
and temperature of the considered system.
The “total entropy” concept (59), on the other hand, as-

sumes that ∆H has, in addition to ∆η, some impact on the
heat exchange between system and environment. This as-
sumption seems not to be motivated by a physical argument,
to say the least, because only the phase space of the atomic
constituents of the considered system, but not information
space, is conceptually related to heat and temperature.
The thermodynamic entropy of system&environment in-

creases if — and because — system&environment approach
thermal equilibrium. The states which code in a computer
for zero and one, in contrast, are never in thermal equilib-
rium with the environment, and they do not approach thermal
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equilibrium, as long as the computer is working correctly. In
particular, the restore to one operation brings the com-
puter not closer to thermal equilibrium, see footnote 8. Thus
it seems physically not well-founded to postulate whatever
correlation between changes of information entropy of these
states and heat exchange with the environment.
Imagine that the computer is performing some certain op-

eration at room temperature (25°Celsius). This operation
results into the change

∆S(59) @ 25◦C
(61)= ∆H@ 25◦C + ∆η@ 25◦C

of total entropy. If we take the computer into a cooled room
(15°Celsius) and perform the same operation, then

∆S(59) @ 15◦C = ∆H@ 15◦C + ∆η@ 15◦C .

If the computer works correctly at both temperatures, then
clearly ∆H@ 15◦C = ∆H@ 25◦C , while obviously ∆η@ 15◦C 6=
∆η@ 25◦C , and consequently ∆S(59) @ 15◦C 6= ∆S(59) @ 25◦C .
This shows again that ∆H is not related to temperature (as
long as the computer is working correctly), hence not related
to thermodynamic entropy, hence not subject to the second
law.

While neither of the incompatible concepts (59) versus (38)&(41)
is disproved by experiment (and therefore “wrong”), I think that
for these reasons it is clearly preferable to keep the concept (38)
of thermodynamic entropy and the concept (41) of information
entropy separate, and not to mix them into the concept (59) of
total entropy.9

9 Bennett [24] claimed that Landauer’s total entropy concept is helpful for the
rejection of Szilard’s perpetuum mobile of second kind. It has been demon-
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6. Conclusions

The three concepts of entropy, which are by today in use in physics,
have been compared. All three are — within their appropriate
application ranges — useful concepts of theoretical physics:
∗ The concept of (ta)-entropy can be consistently applied only

within phenomenological thermodynamics. Extension to sta-
tistical evaluations results into problems like “Gibbs’ paradox”.

∗ The concept of (td)-entropy is useful for statistical evaluations
of tangible objects.

∗ The concept of (id)-entropy is useful for statistical evaluations
of informations, which may be — but do not need to be —
informations about the actual states of tangible objects.

The three entropy types differ in their relations to the “objective
world out there”, which is assumed to exist independent of obser-
vations:
∗ (ta)-entropy changes, if and only if there is an objective change

of the considered system.
∗ (td)-entropy changes only if there is an objective change of the

considered system. The reverse is not true. Whether or not an
objective change of the considered system implies a change of
(td)-entropy does depend on arbitrarily chosen digital criteria,
according to which the physicist assigned a state function to
the system.

∗ Changes of (id)-entropy are not correlated with objective
changes of the considered system. Instead (id)-entropy changes,
whenever we gain or loose information about the considered
system.

strated in [23, sect. 3.2], however, that that machine is anyway impossible,
because Szilard missed to take the unavoidable van derWaals forces into
account.



Astrophysical Institute Neunhof
Circular se09113, February 2018 49
The three entropy types differ with regard to objective measurabil-
ity:
∗ If different physicists analyze the same process, they measure

in any case the same change of (ta)-entropy.
∗ If different physicists analyze the same process, they measure

the same change of (td)-entropy only if they apply the same
digital criteria for the definition of the state of the considered
system.

∗ (id)-entropy is by construction (in general) different for differ-
ent observers, hence not objectively measurable.

The three entropy types differ with regard to the notion of “states”:
∗ Changes of (ta)-entropy depend on the quotient Q/T , but not

on a “state” assigned to the system.
∗ (td)-entropy is the larger, the larger the number of different

microstates in phase space, which are compatible with the
macrostate arbitrarily assigned to the system.

∗ (id)-entropy is the larger, the larger the number of different
macrostates which are compatible with our knowledge of the
actual macrostate arbitrarily assigned to the system.

The three entropy types differ with regard to the second law of
thermodynamics:
∗ A decrease of (ta)- or (td)-entropy without compensating

entropy increase of the environment is restricted by a — in
case of (ta)-entropy deterministic, in case of (td)-entropy
probabilistic — law of nature.

∗ No such restriction exists for a decrease of (id)-entropy.
Landauer’s suggestion to amalgamate thermodynamic entropy

and information entropy into just one “total entropy” has been
rejected. We compiled several good reasons why these concepts
should better be kept separated.
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(ta)-entropy may be called an “objective” quantity of the consid-
ered system, because it is of no relevance for this quantity whether
or not a physicist is looking. (id)-entropy, on the other hand, may
be called a “subjective” quantity, which characterizes not objective
facts but the knowledge of a physicist about objective facts.

The concept of (td)-entropy refuses to be squeezed into a simple
objective / subjective scheme. In contrast to (id)-entropy, any
change of (td)-entropy is strictly correlated with an objective
change of the considered system, i. e. (td)-entropy has not a purely
subjective character. And in contrast to (ta)-entropy, (td)-entropy
is not uniquely determined by objective facts “out there”, i. e. (td)-
entropy has not a purely objective character.
Gibbs’ (td)-entropy shares this peculiar inseparable amalgama-

tion of subjective and objective elements with the state vector of
quantum theory. In his Gifford lecture [25], Heisenberg character-
izes the state vector (which he calls “probability function” in this
lecture) as follows:

“The probability function combines objective and subjec-
tive elements. It contains statements about possibilities
or better tendencies (‘potentia’ in Aristotelian philos-
ophy), and these statements are completely objective,
they do not depend on any observer; and it contains
statements about our knowledge of the system, which of
course are subjective in so far as they may be different
for different observers.”

The notable parallel with regard to the mixture of subjective /
objective elements in Gibbs’ method of thermodynamics and quan-
tum theory was well-known to the Copenhagen quantum physicists.
Heisenberg reports (for example in [26, chap. 9]), that Bohr con-
cluded many discussions on the intricate interplay of subjective
and objective traits in quantum theory with remarks like “you can
read all this in the writings of Gibbs.” With regard to that mixture,
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Jaynes [27] once complained that quantum theory is

“a peculiar mixture describing in part realities of Nature,
in part incomplete human information about Nature —
all scrambled up by Heisenberg and Bohr into an omelette
that nobody has seen how to unscramble. Yet we think
that the unscrambling is a prerequisite for any further ad-
vance in basic physical theory. For, if we cannot separate
the subjective and objective aspects of the formalism, we
cannot know what we are talking about”.

The demand for a nice separation of subjective and objective ele-
ments, however, is missing the true character of any state function.
By construction, the state function must inevitably display an in-
complete, “subjectively” chosen selection of “objective” parameters,
which characterize the considered system. It is plainly impossible
to compile a purely objective state function, because it is impossible
to compile a complete state function. Quantum theory added the
complication, that canonical conjugate variables are not precisely
accessible at the same time.

But already in classical physics we can not avoid to restrict the
state function — by arbitrarily, i. e. “subjectively” chosen digital
criteria — to a finite number of “relevant” objective parameters,
and ignore all other (known, or yet unknown) objective parame-
ters. We only need to replace “thermodynamics” by “quantum
mechanics”, to make Gibbs’ remark “It is to states of systems
thus incompletely defined that the problems of thermodynamics
relate.” [3, part I, p. 228] a sentence, which could have been written
by Bohr or Heisenberg.

It is a question of minor importance only, whether the decision,
which parameters are considered relevant and which are considered
irrelevant, is made arbitrarily or enforced by the impossibility to
access canonical conjugate parameters at the same time. The essen-
tial fact is, that this decision can not be avoided. The Copenhagen
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quantum physicists had understood that by end of the nineteen-
twenties. Gibbs had understood that half a century earlier, and it
was exactly this insight which led him to the conception of (td)-
entropy.
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