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Decoherence
The decoherence of the state functions of open quantum systems

is known already since the twenties of last century. But only since
the seventies it found appropriate attention in the debate about
the interpretation of quantum theory. In this letter we derive and
compare the basic concepts for the description of measurements of
closed and open quantum systems. Thereby the density operator is
introduced, and the notions PVM and POVM are explicated. Also
the “measurement problem of quantum theory” and the “problem
of the preferred basis” are discussed in this context. In the last
section, the essential properties of projection operators and density
operators will be evaluated.

For an amazing long time, the basic importance of decoherence
of quantum systems, which are entangled with their environment,
has been overlooked. Our central result (35) can be found already
in §1, equation (4) of a publication by Landau[1] from the year 1927.
Also in the following decades, these facts never have fallen into
oblivion. As a typical example we mention the extensive discussion
on the relationship between measurement and decoherence in the
chapters 19 and 20 of the textbook on quantum mechanics by
Gottfried [2]. Another example is a citation of Heisenberg from
1955, which we will quote on page 27. But only in the seventies and
eighties, the phenomenon of decoherence of open quantum systems
got the appropriate attention in the debate on the interpretation
of quantum theory, starting with a publication by Zeh [3] in 1970.



2 Decoherence

1 Closed Quantum Systems

The state of a quantum system S is described by means of the
state function |ψ〉. The state function is a vector in the Hilbert
space H. It is conveniently normalized to unity: 〈ψ|ψ〉 = 1.

Measurable quantities (observables) are represented by hermitean
operators. We consider the simple case of an observable Q, which
has only discrete eigenvalues, and whose normalized eigenvectors
|qj〉 with eigenvalues qj constitute an orthonormal basis, spanning
the Hilbert space H:

The |qj〉 are eigenvectors of Q: Q|qj〉 = qj |qj〉 (1a)
The |qj〉 are orthonormal: 〈qk|qj〉 = δkj (1b)
The |qj〉 are complete:

∑
j |qj〉〈qj | = 1 (1c)

If the observed system is described by the state function |ψ〉, and
if this state is normalized to unity, then the expectation value of
the observable Q is

〈Q〉ψ = 〈ψ|Q|ψ〉 =
∑
j

〈ψ|Q|qj〉〈qj |ψ〉 =

=
∑
j

qj 〈ψ|qj〉︸ ︷︷ ︸
a∗j

〈qj |ψ〉︸ ︷︷ ︸
aj

=
∑
j

qj |aj |2 =
∑
j

qj wj . (2)

aj is the probability amplitude, and wj is the probability, for the
value qj to be observed in a particular measurement. The mean
value 〈Q〉ψ is expected for measurements of a large ensemble of
systems, which all were prepared in the state |ψ〉.

The measurement not only produces a measured value, but at the
same time prepares a new state. The system, which was described
by the state function |ψ〉 before the observable Q was measured, is
described by the state function |qk〉 after the measurement, if the
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eigenvalue qk was observed:

dynamic I: |ψ〉 measurement of Q with result qk−−−−−−−−−−−−−−−−−−−−−−→ |qk〉 (3a)

With probability wk the value qk will be observed in a particular
measurement of the observable Q, and the system will be prepared
in the state |qk〉, if it was described by the state |ψ〉 before the
measurement. The measurement, which is described by dynamic I,
is a discontinuous, irreversible process, which can not be explained
deterministically. Only the probability wk of the result qk can
be computed, but in general it is impossible to predict definitely,
which result qk will be observed in a particular single measurement.

The process of state preparation caused appreciable irritations
since the discovery of quantum mechanics, because quantum sys-
tems are thus subject to two completely different types of dynamics.
Dynamic I: A measurement changes the system’s state discontinu-
ously, irreversibly, indeterministically, in our example from |ψ〉 to
|qk〉. In contrast, the

dynamic II : ∂|ψ〉
∂t

= − i
~
H|ψ〉 (3b)

is describing a continuous, unitary, reversible, deterministic evo-
lution of the state according to the Schrödinger equation. The
irritations are caused by the fact, that there exists no criterion,
whether a cluster of atoms is to be considered a measurement
device, which is inducing a discontinuous evolution according to dy-
namic I= (3a), or whether this cluster of atoms is to be considered
a quantum system, whose interaction with the investigated object
should be integrated into the Hamilton operator of the continuous
dynamic II= (3b). What is qualifying a cluster of atoms, to be
acknowledged as a measurement device, whose action can (and
must) be described by dynamic I?
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2 The invention of the “measurement problem”

It was John v.Neumann, who extensively stressed the strange
appearance of the both completely different types of dynamics (3)
to which the state functions of quantum systems are subjected,
when he published by 1932 the first mathematically rigorous pre-
sentation [4] of the young quantum mechanics. He suggested to
describe all types of objects — even macroscopic ones, including
measurement devices — at least formally by the methods of quan-
tum theory. If the measurement device is displaying the value qk,
then the quantum state |mk〉 shall be ascribed to it according to
v.Neumann’s theory of measurement.

v.Neumann considered two aspects of the measurement sepa-
rately: One aspect is the combination of the investigated quantum
system S, whose state is |ψ〉 =

∑
j aj |qj〉, and the measurement

device M , whose state is |m0〉 before the measurement, such that
they can interact and generate a common, merged quantum state:

|m0〉∑
j aj |qj〉

}
1. aspect−−−−−−−→

∑
j

aj |qj〉 |mj〉 (4a)

This aspect of the measurement process creates a state, in which
the state functions of the investigated system and of the measure-
ment device are mutually entangled. Below we will explain the
exact meaning of this notion. Note: (4a) does not state, that the
state function |ψ〉 =

∑
j aj |qj〉 of the measured system remains

unchanged. Just the opposite. The state function |ψ〉 =
∑
j aj |qj〉

has completely disappeared. Instead there is now a state function∑
j aj |qj〉 |mj〉, which is representing the common state of object

and measurement device.
The process of measurement is not yet completely described by

(4a), because a measurement device never displays the superposition
of different, macroscopically distinguishable values qj . There still
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is a second aspect of measurement: The state function is reduced
to the single state |qk〉 |mk〉, and consequently the unique value qk
can be read off the measurement device:∑

j

aj |qj〉 |mj〉
2. aspect−−−−−−−→ |qk〉 |mk〉 (4b)

This second aspect

aj
2. aspect−−−−−−−→

{
1 if j = k

0 if j 6= k

of the measurement is called “reduction”, or “projection”, or
“collapse” onto the state |qk〉 |mk〉. The reduction is the not de-
terministically explainable, discontinuous, irreversible aspect of
measurement, which above was named dynamic I.
But why is there a collapse in case of interaction with a mea-

surement device, while there is no collapse in case of interaction
with an other, arbitrarily complex aggregate of atoms? If the com-
plex aggregate of atoms wasn’t a measurement device, the process
would stop at (4a), and no collapse would happen. How does the
investigated system recognize, that this is a measurement, and that
therefore now a collapse is due? This question was dubbed “the
measurement problem of quantum theory”.

With his presentation of the measurement process, v. Neumann
deviated significantly from the “Copenhagen interpretation” [5]
of quantum theory, which Bohr and Heisenberg had elaborated
in 1927. According to the perception of the Copenhagen inter-
pretation, set-up and sequence of an experimental observation of
a quantum phenomenon, the applied measurement devices, and
the achieved results, must all be described in the language and by
the notions of classical physics. This is mandatory from the very
beginning, not only after a “collapse”. As, according to the Copen-
hagen interpretation, measurement devices categorically must be
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described classically, there never can be the question, which of the
dynamics (3) should be applied to their description: Neither the
one nor the other, because measurement devices by definition never
are to be considered as quantum systems. Thus the “measurement
problem” is a home-made problem, which v.Neumann created by
himself, when he — contrary to the instruction manual for quan-
tum theory, as supplied from Copenhagen — extended the theory’s
application range to measurement devices.
v. Neumann was not the only one, who did not want to content

himself with the postulates of the Copenhagen interpretation. It is
beyond dispute, that measurement devices are systems, which are
composed of atoms. The distinction between measurement devices,
which categorically must be described classically, and other more
or less complex aggregates of atoms and molecules, which can (and
sometimes must) be described by the methods of quantum theory,
is seeming arbitrary and dissatisfying to many scientists. But if one
wants to consider and to describe arbitrary macroscopic objects
in the first instance as — possibly quite complex — quantum
systems, then one must find an explanation for the reduction
(4b) of their state vectors, because it is also beyond dispute, that
measurement devices and other macroscopic objects never are
observed in superposition states of the type (4a).
The alternatives to the Copenhagen interpretation, which have

been proposed in the following decades to explain the reduction of
quantum states (4b), can essentially be grouped into four categories:
∗ There is initially no difference at all in-between measurement de-
vices and other aggregates of atoms. Therefore there is initially
no collapse. Instead the process stops at (4a). But if a human
being is looking at the pointer of the measurement device, then
he/she perceives a certain measured value displayed. Thus the
appearance of the human being is the essential factor, which
effects the collapse. But also the optical interaction between
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the measurement device and the human being’s eyes, and also
the transmission of the stimulus from the retina to the brain
should be subject to the laws of quantum theory. Therefore
ultimately the human being’s consciousness remains as the only
factor, which possibly can trigger the collapse. This was the
point of view, which v.Neumann adopted in his book [4]. Thus
a measurement result according to v.Neumann does not exist
as an objective fact in the “outside world”, but only within
a human being’s consciousness. He phrased it in these words:
“Experience only makes statements of this type: an observer has
made a certain (subjective) perception, but never of that type:
a physical quantity has a certain value” [4].
∗Modifications of quantum theory, by which the collapse is for-
mally integrated into the theory: Additional factors have been
inserted into quantum theory, which at random points of time
trigger a collapse of the state function. These factors are con-
structed such, that the collapse is triggered the more frequently,
the more complex and/or the heavier the quantum system is.
This method was elaborated in detail by Ghirardi, Rimini, and
Weber [6].
∗Modifications of quantum theory, which don’t need a collapse
of state functions, because quantum systems never are in an
superposition state of type (4a). Quantum objects still can
interfere with other objects and/or with themselves in these
modified theories due to additional, non-material guiding fields,
or similar “hidden variables”: The most prominent example is de
Broglie’s concept of the pilot wave [7], which was reconstructed
and further developed by Bohm [8].
∗ The “many worlds”-interpretation of Everett [9] and deWitt [10]:
While any measurement (and any other interaction) is creating
superposition states of the type (4a), there is no collapse in
this interpretation. Instead as the next step after (4a), the
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observer observes the measurement result. That might be called
a “measurement of the measurement device”:

|b0〉∑
j aj |qj〉 |mj〉

}
1. aspect−−−−−−−→

∑
j

aj |qj〉 |mj〉 |bj〉 (5)

The human observer as well is to be considered a quantum
system, according to Everett’s interpretation. Before he reads
the measurement device’s display, his state is |b0〉. After he
noted the measurement result, he is in the entangled state
of the right-hand side of (5). With the j-component of his
consciousness he is observing the result qj , with the k-component
of his consciousness he is observing the result qk, and so on. The
detailed evaluation is showing, that absolutely no communication
is possible between the different components of the observer’s
consciousness. With each component of his consciousness, the
observer notes a unique result, and he does not know that with
the infinitely many other components of his consciousness (“in
infinitely many other worlds”) he is noting infinitely many other
results. While this interpretation of course is bizarre (to say the
least), it still seems to be compatible with all observable facts.

The second and third alternatives modify the theory’s formalism,
while the first and the fourth alternatives merely give a different
interpretation than the Copenhagen interpretation for the same
formulas. Three of the four alternatives coincide in all experimen-
tally verifiable predictions with the Copenhagen interpretation.
Only the stochastically triggered collapse formulated by Ghirardi,
Rimini, and Weber results in slight differences, which might be-
come observable in future for mesoscopic systems due to improved
experimental technology.

Heisenberg coined the notion “cut”, to emphasize the discontin-
uous character of the borderline in-between that part of the world,
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which must be described by quantum theory, and that part of the
world, which must be described classically. According to the Copen-
hagen interpretation, the cut may be shifted within a wide range,
but there are limits. Quantum systems like atoms or molecules in
any case must be described by quantum theory. On the other hand,
human observers (inclusive of their consciousness), and the mea-
surement devices used for the detection of quantum phenomena,
as far as they obviously (this notion is to be understood literally!)
are behaving classically, must compulsory be described by classical
theory. Usually several amplifiers are cascaded for the observation
of quantum phenomena. Then according to Copenhagen under-
standing it doesn’t matter, at which exact point the cut in-between
quantum-theoretical description and classical description is placed.
v.Neumann shifted the cut beyond the obviously classical mea-

surement devices (e.g. the observer’s eyes) to the borderline(??)
in-between(??) the human being’s brain and consciousness, where
it is likewise incomprehensible for both physical and philosophical
analysis. Everett’s and deWitt’s point of view is significantly sim-
pler than v.Neumann’s, and even simpler than the Copenhagen
point of view: It discards the cut and applies the same (quantum
theoretical) type of description to each and everything within the
universe. It even makes human consciousness an ordinary physical
object, which is subject to quantum theory.

3 Projection Operators and Traces

To prepare for the definition and discussion of the decoherence of
open quantum systems, first some formal clarifications are needed.
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We resume equation (1):

The |qj〉 are eigenvectors of Q: Q|qj〉 = qj |qj〉 (6a)
The |qj〉 are orthonormal: 〈qk|qj〉 = δkj (6b)
The |qj〉 are complete:

∑
j |qj〉〈qj | = 1 (6c)

On the left-hand side of (6c), there is the sum of projectors

Pj ≡ |qj〉〈qj |
∑
j

Pj = 1 (7)

onto the states |qj〉. As
∑
j Pj is an operator, the 1 on the equation’s

right-hand side is an operator as well. It is the “identity operator”,
which is leaving unchanged any state function onto which it is
acting. Any arbitrary state function is an eigenfunction of the
operator 1 with eigenvalue 1:

1|φ〉 = 1|φ〉 (8)

Using the projector Pj = |qj〉〈qj | and an arbitrary system |s〉
of orthonormal state functions, which span the Hilbert space, the
probability wj , which was defined in (2), can be converted:

wj = 〈ψ|qj〉〈qj |ψ〉 =
∑
s

〈ψ|s〉〈s|qj〉〈qj |ψ〉 =

=
∑
s

〈s|qj〉〈qj |ψ〉〈ψ|s〉 = Tr
{
Pj |ψ〉〈ψ|

}
(9)

As the scalar products 〈 | 〉 ∈ C are commuting numbers, the
product could be re-ordered. The sum of the diagonal elements
of a matrix is called trace. wj is the trace of the product of the
projectors Pj = |qj〉〈qj | and |ψ〉〈ψ|.
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The expected mean value of an observable Q can as well be

computed by means of the trace:

〈Q〉ψ = 〈ψ|Q|ψ〉 =
∑
s

〈ψ|Q|s〉〈s|ψ〉 =
∑
s

〈s|ψ〉〈ψ|Q|s〉

〈Q〉ψ = Tr
{
PψQ

}
with Pψ ≡ |ψ〉〈ψ| (10)

While this formulation at first seems (and actually is) more labori-
ous than necessary, it will allow for a very useful generalization in
the description of open systems.
In the last terms each of (9) or (10) it’s no more visible that

the trace was generated with the basis vectors |s〉. Actually this
information is not needed, because the same trace is generated
for arbitrary operators A with any arbitrary system of vectors |t〉,
provided they form a complete system

∑
t |t〉〈t| = 1:

Tr
{
A
}

=
∑
t

〈t|A|t〉 =
∑
t,s

〈t|s〉〈s|A|t〉 =

=
∑
t,s

〈s|A|t〉〈t|s〉 =
∑
s

〈s|A|s〉 (11)

We mention two further properties of the trace, which often are
useful. First, the trace remains unchanged if arbitrary operators
A,B,C are cyclically permuted under the trace:

Tr
{
ABC

}
=
∑
s,t

〈s|AB|t〉〈t|C|s〉 =

=
∑
s,t

〈t|C|s〉〈s|AB|t〉 = Tr
{
CAB

}
(12)

Note, that the trick does only work for cyclical permutations,

Tr
{
ABC

}
6= Tr

{
BAC

}
. (13)
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Second, the identity

Tr
{
|a〉〈b|

}
=
∑
s

〈s|a〉〈b|s〉 =
∑
s

〈b|s〉〈s|a〉 = 〈b|a〉 (14)

is remarkable. In particular, the trace of the projector Pψ = |ψ〉〈ψ|
is equal to the norm 〈ψ|ψ〉 of the state, onto which it is projecting.
Until now we assumed, without explicit mention, that there is

no uncontrolled interaction in-between the system S and it’s envi-
ronment. Systems, for which this assumption is correct, are called
closed. Conversely, open systems are characterized by the fact,
that in-between them and their environment there are interactions,
which at best are partially controlled. To introduce the concept
of decoherence, we need to extend our analysis to open quantum
systems.

4 Open Quantum Systems and Density Operators

In the sequel we consider an open quantum system S, which is part
of a closed quantum system SW , see figure 1. SW is composed from
the two partial systems S and SR. W signifies “world”, meaning the
quantum system consisting of the complete universe. We assume
that this system is closed, and don’t ponder the question (which is
likewise difficult from physical as from philosophical point of view),
whether the universe really is a closed system (better phrased: the

= +

SW

S

SR

Fig. 1 : The system SW = S + SR
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question, whether there does exist a closed system at all). S is the
quantum system, which we want to investigate and to describe.
SR is the “rest of world”. The state functions |ψW 〉 of the closed
system SW are elements of the Hilbert space

HW = H⊗HR , (15)

which is the direct product of the Hilbert spaces H and HR. Let
|s〉 be an orthonormal basis of the Hilbert space H, and |rR〉 be an
orthonormal basis of the Hilbert space HR, such that any vector
|ψ〉 ∈ H can be expanded in the series

|ψ〉 =
∑
s

|s〉〈s|ψ〉 =
∑
s

cs|s〉 , (16)

and any vector |ψR〉 ∈ HR can be expanded in the series

|ψR〉 =
∑
r

|rR〉〈rR|ψR〉 =
∑
r

dRr|rR〉 . (17)

The tensor product of these both vectors is

|ψ〉 ⊗ |ψR〉 =
∑
s

∑
r

csdRr |s〉 ⊗ |rR〉 ∈ HW . (18)

The scalar product of this product-vector and the product-vector

|φ〉 ⊗ |φR〉 =
∑
s

∑
r

esfRr |s〉 ⊗ |rR〉 ∈ HW (19)

is defined by

〈ψ| ⊗ 〈ψR|φ〉 ⊗ |φR〉 = 〈ψ|φ〉〈ψR|φR〉 =
=
∑
s,s′

∑
r,r′

c∗sd
∗
Rres′fRr′ 〈s|s′〉︸ ︷︷ ︸

δss′

〈r|r′〉︸ ︷︷ ︸
δrr′

=
∑
s

∑
r

c∗sd
∗
RresfRr . (20)
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Thus for the computation of the tensor product, first the partial
products in the systems H and HR are computed.

Not every state vector inHW can be written as the direct product
of a vector in H and a vector in HR. Let’s compare the two vectors

|φW 〉 = |φ〉 ⊗ |φR〉 =
∑
s

∑
r

csdRr |s〉 ⊗ |rR〉 ∈ HW (21a)

|ψW 〉 =
∑
s

∑
r

cWsr |s〉 ⊗ |rR〉 ∈ HW . (21b)

(21a) is a product vector, which can be written as the direct product
of the vectors |φ〉 ∈ H and |φR〉 ∈ HR. If for any of the coefficients
of (21b)

cW ij 6= cWji and/or cW iicWjj 6= cW ijcWji , (22)

then the vector |ψW 〉 ∈ HW does not equal the direct product of
any two vectors in H and in HR. In this case, the vectors of the
partial systems are said to be “entangled” in the vector of the
total system. Schrödinger, who coined this notion, considered the
appearance of entangled state vectors in composite systems to be
the essential difference in-between classical theory and quantum
theory. [11]

If a composed system is described by an entangled
state vector, then no state vectors can be assigned
to the partial systems.

(23)

A simple example for an entangled vector is

|ψW 〉 = cW11 |1〉 ⊗ |1R〉+ cW22 |2〉 ⊗ |2R〉 . (24)

This vector can not be written as the direct product of vectors
2∑
s=1

cs |s〉
2∑
r=1

dRr |rR〉 (25)
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of the partial systems S and SR, because in the direct product

2∑
s=1

2∑
r=1

csdRr |s〉 ⊗ |rR〉 = c1dR1 |1〉 ⊗ |1R〉+ c1dR2 |1〉 ⊗ |2R〉+

+ c2dR1 |2〉 ⊗ |1R〉+ c2dR2 |2〉 ⊗ |2R〉 (26)

there inevitably will be terms which are mixed in the indices 1 and
2 (because c1, dR1, c2, dR2 all must be different from zero), which
don’t exist in (24).
Open quantum systems are almost always entangled with the

rest of the world. Consequently they can not be described by state
vectors, see (23). Exactly this is the difference in-between open
and closed quantum systems. This induces a practical problem. If
we want to compute by the usual methods the expectation value

〈Q〉ψ = 〈ψ|Q|ψ〉 (10)= Tr
{
|ψ〉〈ψ|Q

}
(27a)

of an observable Q in the state |ψ〉 of system S, then we get stuck
already from the outset, as the state |ψ〉 of system S isn’t defined
at all, if S and SR are described by an entangled overall state. In
case of entanglement, only the combined state function |ψW 〉 of the
entangled systems is defined. It is defined “in principle”, but it is
never known explicitly, and thus can’t be used in computations.
In the following, we will derive an “effective” state function |χ〉

of system S, by means of which the expectation value

〈Q〉ψW
= Tr

{
|χ〉〈χ|Q

}
(27b)

of the observable Q can be computed even if the system S is
entangled with the environment, and even if measurements are
confined to system S.
For this purpose we must define upfront, how scalar-products

and projectors of entangled states are formed. The projector onto
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the entangled state (21b) is

|ψW 〉〈ψW | =
∑
s

∑
r

c∗WsrcWsr |s〉 ⊗ |rR〉〈s| ⊗ 〈rR|

=
∑
s

∑
r

c∗WsrcWsr |s〉〈s| ⊗ |rR〉〈rR| . (28)

The scalar product of the vector (21b) and the vector

|φW 〉 =
∑
s

∑
r

dWsr |s〉 ⊗ |rR〉 ∈ HW (29)

is

〈ψW |φW 〉 =
∑
s,s′

∑
r,r′

c∗WsrdWs′r′ 〈s|s′〉︸ ︷︷ ︸
δss′

〈rR|r′R〉︸ ︷︷ ︸
δrr′

=
∑
s

∑
r

c∗WsrdWsr .

(30)

Thus to compute the overall product, first the partial products in
H and in HR are computed.

Let’s compute the expectation value 〈Q〉ψW
of an observable Q,

which is exclusively a property of the partial system S, i.e. the
operator Q is acting only in Hilbert space H. Assume that the
state of system S is entangled with the state SR of the rest of the
world, composing the state

|ψW 〉 =
∑
s

∑
r

cWsr |s〉 ⊗ |rR〉 ∈ HW (31)

of the universe SW . This state can not be written as the direct
product of a state vector of the system S and a state vector of the
system SR. Therefore neither the system S nor the system SR is
in a defined state. We define the operator for the overall system
as the direct product

QW = Q⊗ 1R . (32)
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The operator 1R is acting only in the Hilbert space HR. It is
the “identity operator”, which — see (8) — leaves unchanged any
state function, onto which it is acting. We make the plausible
assumption, that the expectation value of the observable Q, which
is measured in the system S, is identical to the expectation value
of the observable QW , which is measured in the system SW . As
the system W is closed, the expectation value can be computed by
means of the projector |ψW 〉〈ψW | and the trace:

〈Q〉ψW

(10)= TrW

{
|ψW 〉〈ψW |QW

}
(33)

Inserting the operator (32), and computing the trace with the
orthonormal system |s〉 ⊗ |rR〉, results into

〈Q〉ψW
=
∑
s

〈s|
∑
r

〈rR|ψW 〉〈ψW |1R|rR〉Q |s〉

= Tr
{
TrR

{
|ψW 〉〈ψW |

}
Q
}
.

The trace, which is to be computed in the system R (the rest of
the world), is called the density operator ρ. It is converted such,
that only state functions of the system S are showing up in it:

ρ ≡ TrR

{
|ψW 〉〈ψW |

}
=
∑
r

〈rR|ψW 〉〈ψW |rR〉

=(28) ∑
r′,s,r

c∗WsrcWsr|s〉〈s| 〈r′R|rR〉〈rR|r′R〉︸ ︷︷ ︸
δrr′

=
∑
s

ws|s〉〈s| with ws ≡
∑
r

c∗WsrcWsr ≥ 0 ∈ R . (34)

Thus the expectation value of the observable Q in the open system
is:

〈Q〉ψW
= Tr{ρQ} with

{
ρ =

∑
sws|s〉〈s|

ws =
∑
r c
∗
WsrcWsr ≥ 0 ∈ R

(35)
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This result for the open system should be compared to the result

〈Q〉ψ
(10)= Tr

{
PψQ

}
with Pψ = |ψ〉〈ψ|

for the closed system! |s〉〈s| is a projector, which is acting in the
system S. Therefore also the density operator ρ, being the weighted
sum of these projectors, is an operator, which is acting in the system
S. Only deeply buried in the weighting factors ws, the density
operator is shaped by the entanglement of the systems S and SR.
Comparison of (27b) and (35) results into

|χ〉〈χ| =
∑
s

∑
r

c∗WsrcWsr |s〉〈s| =
∑
s

ws |s〉〈s| , (36)

and consequently the effective state function

|χ〉 =
∑
s

√
ws |s〉eiϕs with

{
ϕs ∈ R
ϕs not defined

(37)

can be assigned to the open system S. As |χ〉 has been determined
by detour via the projectors (36), the phase factors ϕs are not
defined because of

|s〉〈s| = |s〉e−iϕs 〈s|eiϕs for arbitrary ϕs ∈ R .

A state with un-defined phase is called a “mixture”, in contrast to
a “pure state”

|ψ〉 =
∑
s

|s〉〈s|ψ〉 =
∑
s

cs|s〉 , (38)

whose phases are well-defined by the complex coefficients cs =
〈s|ψ〉 ∈ C. This is a significant insight: If the state function of
the universe can not be written as the direct product of a state
function of the open system S and a state function of the rest of
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the world, then the effective state of the system S is not a pure
state, but a mixture. This is the regular case. Only if the evaluated
system is effectively isolated from the rest of the world, it can be
described approximately (but never exactly!) by a pure state.

Aside from the weighting factors ws, there are exclusively quan-
tities of the system S in (35). All quantities of the system S
are measurable and computable. But how can we know the ws?
Without these factors, the result (35), while being mathematically
perfectly correct, would be completely useless. There is a simple
answer to this question in the special case that the environment,
with which the system S gets entangled, is a well constructed mea-
surement instrument. Let’s assume that S is described by the state
vector |ψ〉, and that the measurement instrument is constructed to
measure the observable Q, i. e. the measurement result will be one
of the eigenvalues qi , and S get’s prepared in the related eigen-
state |qi〉 of the measuring instrument.
Then we should first expand |ψ〉 with respect to the |qi〉:

|ψ〉 =
∑
j

aj |qj〉 (39)

With the Copenhagen interpretation, exclusively classical physics
are valid for the measurement instrument. But now we want to
understand how the system S behaves when it is getting entangled
to an environment, which is described by quantum theory. Thus we
now should have a look at v. Neumann’s theory of measurement, in
which quantum theory is (though only “in principle”) applied to the
instrument. It has been shown in equation (4a), how v.Neumann
describes the entanglement as the 1. aspect of the measurement
process:

|m0〉∑
j aj |qj〉

}
1. aspect−−−−−−−→

∑
j

aj |qj〉 |mj〉
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Comparing that with

|ψW 〉
(31)=

∑
s

∑
r

cWsr |s〉 ⊗ |rR〉 ,

we see that

if |s〉 are the eigenfunctions of the environment,

then
∑
r

cWsr = as and ws
(36)=

∑
r

|cWsr|2 = |as|2 . (40)

Thus finding the coefficients ws in (36) is simple, if the environment
is a measuring instrument. In other cases, we must guess to what
type of measuring instrument the environment is similar, expand
the system’s state function accordingly, and achieve thereby at
least an acceptable guess for the coefficients ws .

As we encode all our knowledge about the evaluated open system
in the density operator ρ, we should better write 〈Q〉ρ instead of
〈Q〉ψW

in (35):

〈Q〉ρ = Tr{ρQ} with


ρ =

∑
sws|s〉〈s|

ws ≥ 0 ∈ R determined
by best guess according
to (40).

(41)

5 PVM and POVM

The acronym PVM codes for Projection Valued Measure, and the
acronym POVM codes for Positive Operator Valued Measure. As
these notions are often encountered in the mathematically oriented
literature, I will now give a short explanation.
If the state of a closed system is described by |ψ〉, then the

expectation value of the operator Q is
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〈Q〉ψ =(10) Tr
{
PψQ

}
=
∑
k

〈qk|ψ〉 〈ψ|Q|qk〉︸ ︷︷ ︸
qk〈ψ|qk〉

=

=
∑
k

wkqk with wk ≡
∣∣〈qk|ψ〉∣∣2 ≥ 0 . (42a)

If the state of an open system is described by the density operator

ρ =
∑
k

wk|qk〉〈qk| ,

then the expectation value of the operator Q is

〈Q〉ρ =(41) Tr{ρQ} =
∑
k,k′

wk 〈qk′ |qk〉〈qk|Q|qk′〉︸ ︷︷ ︸
qk′δkk′

=

=
∑
k

wkqk with wk
(35)=

∑
r

∣∣cWkr

∣∣2 ≥ 0 . (42b)

The only difference of (42b) versus (42a) is that the projection
operator Pψ has been replaced by the density operator ρ , while the
results are identical. In either case the coefficients wk are reflecting
the probability, that a single measurement of the observable Q will
have the result qk . As for any reasonable probabilities, the wk sum
up to unity: ∑

k

wk = 1 (43)

But only the coefficients wk =
∣∣〈qk|ψ〉∣∣2 of the closed system (42a)

can be computed. The coefficients wk of the open system (42b)
must be found by guessing.
In the mathematical analysis of the system, we may be more

interested in the values of the probabilities wk than in the measured
values qk . If the system is closed, and it’s state function is |ψ〉,
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then the wk are simply the expectation values of the projectors
Pqk

= |qk〉〈qk| :

〈Pqk
〉ψ = 〈ψ|Pqk

|ψ〉 = 〈ψ|qk〉〈qk|ψ〉
(42a)= wk (44)

This is a map from the set of state functions |ψ〉 onto the real
numbers wk . A “measure” is in mathematical terminology a
generalized form of a map from some set onto the real numbers.
In this case the map is specified by the projectors Pqk

. Hence (44)
is called a projection-valued measure=PVM.

We would like to generalize the PVM to the open quantum sys-
tem. (42a) could be generalized to (42b) by replacing the projector
Pψ by the density operator ρ . This method of generalization can
not immediately be transferred to (44), because the state function
|ψ〉 of the closed system is an indispensable part of (44), while no
state function is defined for the open system.
But remember the identity-operator 1 defined in (7). This

operator leaves unchanged any state function on which it is acting.
Furthermore any arbitrary state function |φ〉 is an eigenfunction of
the operator 1 with eigenvalue 1 :

1|φ〉 (8)= 1|φ〉 (45)

This property (i. e. the independence from the state functions |φ〉)
makes the identity-operator suitable for the sought measure:

〈φ|Wk|φ〉 = wk ∀|φ〉 (46)

This construction will work, if the operatorsWk (written as capitals,
while the probabilities wk are written as small characters) are a
decomposition ∑

k

Wk = 1 (47)
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of the identity-operator 1 , because of∑

k

Wk|φ〉
(47)= 1|φ〉 (45)= 1|φ〉 (43)=

∑
k

wk|φ〉 .

The measure (i. e. the map) (46) from the set of arbitrary (and
actually unknown) state functions |φ〉 of the open quantum system
onto the real numbers wk is positive (because all wk are ≥ 0), and
it is operator-valued (because the projectors Pψ of (44) have been
generalized to the operators Wk). Hence (46) is called a positive
operator-valued measure=POVM. It generalizes the PVM (44),
which is applicable only in case of closed systems, to the case of
open systems.

The definition of the POVM (46) is of course important for the
mathematical analysis of the problem. Regarding the practical
task of the physicist, however, who is trying not only to analyze
but to solve the problem, i. e. to actually find out the values of
the wk, the definition of the operators Wk and the POVM (46) is
obviously irrelevant.

Still many physicists say that they change from a PVM descrip-
tion of measurements to a POVM description, when handling open
quantum systems. But this is imprecise wording. What they want
to point out is that they change from (42a) to (42b), i. e. that they
base their computations of expectation values on density operators
but not on state functions. This change is of course indispensable,
if open quantum systems shall be handled appropriately.

6 Decoherence

Due to the undefined phase, a mixture can not generate interference
effects. It can’t neither interfere with itself, nor with other state
functions. The loss of well-defined phase relations also becomes
visible in the disappearance of off-diagonal elements of matrices:
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We compare the matrix representations of the projector Pψ and
the density operator ρ, using the same basis |s〉 as applied in the
definition of ρ in (35):

(Pψ)ss′ = 〈s|ψ〉〈ψ|s′〉 (38)= csc
∗
s′ (48a)

(ρ)ss′ =
∑
s′′

ws′′ 〈s|s′′〉︸ ︷︷ ︸
δss′′

〈s′′|s′〉︸ ︷︷ ︸
δs′′s′

= wsδss′ (48b)

The density matrix (48b) is a diagonal matrix, all off-diagonal
elements are zero. In contrast, in the projector-matrix the off-
diagonal elements usually are different from zero.
The entanglement of the system S with the rest of the world

produces the result, that the effective state functions |χ〉 loose a sig-
nificant property of the state functions of closed quantum systems
— namely the capability to produce interference phenomena. In
the experimental observation of mesoscopic objects (medium-sized
molecules), the detection of the gradual loss of interference capa-
bility (caused by gradually increased coupling to the environment)
is possible, see e. g. [12].
Using the keyword “gradual”, we are alluding to an overly sim-

plification in our previous delineation: At the start of this letter,
we considered a closed system. And now we considered a system
which is completely entangled with it’s environment, with all off-
diagonal elements of the density matrix (48b) being zero. But
inbetween, there still is the important range of gradual transition
between these extremes in case of more or less strong coupling of
S and SR.
How fast will a state decohere, if a system, which was closed at

the beginning, is exposed to interactions with the environment?
Joos and Zeh [13] tried to estimate the speed of decoherence. For
that purpose they considered quantum objects, which at time
t0, when the interaction with the environment is switched on,
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can be found with finite probability at different spots x,x′ in
three-dimensional position space. If these objects are exposed to
scattering by electromagnetic radiation or by gas molecules of the
environment, then these scattering events are gradually destroying
the off-diagonal elements in the density matrices of these objects,
i. e. they are destroying the phase relations inbetween the state
function’s components localized at different positions.

The density matrix (48b), whose components were computed by
means of the basis vectors |s〉, is in this case replaced by a density
matrix, whose components are computed by means of the vectors
|tx〉 of the time-dependent continuous position basis. We won’t try
to reproduce the computation of Joos and Zeh, but merely state
their result:

(ρ)xx′(t) =
∫

dx′′ 〈tx|tx′′〉〈tx′′|tx′〉

= (ρ)xx′(t0) exp{−(t− t0)(x− x′)2Λ} (49)

0 < Λ ∼ N

V
k2 v

It’s plausible, that the decoherence rate Λ is proportional to the
velocity v of the scattering particles, proportional to the square k2 of
their wave number, and proportional to their number N per volume

diameter of system S 10 000nm 100 nm 10nm
cosm. background rad. 10−8 10−20 10−26

room temperature 10−5 10−2 10−8

sunlight (on earth) 107 103 10−1

air 1022 1018 1016

laboratory vacuum 109 105 103

Table 1: Decoherence rate Λ /(nm−2s−1)
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V . The decoherence of the delocalized quantum objects takes place
remarkably fast, i. e. exponentially with (t−t0)(x−x′)2Λ. In table 1
on the previous page the rates of decoherence are listed, which
Joos and Zeh [13] found for quantum systems S of different sizes
due to different kinds and strengths of coupling to the environment.
Apparently the decoherence due to scattering of gas molecules is
significantly more efficient than the decoherence due to scattering
of photons. But even if the entanglement with the environment is
merely effected by the cosmic background radiation, this effect is
significant for macroscopic objects.
We emphasize that (49) is describing the decoherence of the

quantum object S, but clearly not it’s localization. The different
diagonal elements of the density matrix are specifying different
spots x as the positions of this object. The values of the different
diagonal elements are not changed, i. e. we get for all diagonal ele-
ments (ρ)xx(t)(49)= (ρ)xx(t0). Only the off-diagonal elements tend to
zero. The decoherence does not produce a collapse of the quantum
object S to a certain position, but only destroys the capability
of interference of state components with different position coordi-
nates. If in a doubleslit-experiment a molecule, which is running
through the apparatus, is loosing it’s capability for interference
due to coupling to the environment, then no interference figure is
observed behind the doubleslit. This does not at all mean, that
the molecule is localized and crossing only one of the two slits. It
stays to be delocalized over the area of both slits, exactly as in
the case without decoherence (the diagonal elements of it’s density
matrix have not been changed by decoherence). Just it’s two state
components, which are localized at the two slit positions, are not
any more capable to produce interference (the off-diagonal elements
of it’s density matrix have disappeared due to decoherence).

We end this section with a citation of Heisenberg. In the winter-
term 1955/56, Heisenberg read the Gifford-Lectures at the Univer-
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sity St. Andrews in Scotland. In the tenth lesson, titled “Language
and Reality”, he remarked [5, chap.X]:
“[In the case of quantum theory] we have at first no simple

guide for correlating the mathematical symbols with concepts of
ordinary language; and the only thing we know from the start
is the fact that our common concepts cannot be applied to the
structure of the atoms. Again the obvious starting point for the
physical interpretation of the formalism seems to be the fact that
the mathematical scheme of quantum mechanics approaches that
of classical mechanics in dimensions which are large as compared
to the size of the atoms. But even this statement must be made
with some reservations. Even in large dimensions there are many
solutions of the quantum-theoretical equations to which no analo-
gous solutions can be found in classical physics. In these solutions
the phenomenon of the interference of probabilities would show up,
[. . . which] does not exist in classical physics. Therefore, even in the
limit of large dimensions the correlation between the mathematical
symbols, the measurements, and the ordinary concepts is by no
means trivial. In order to get to such an unambiguous correlation
one must take another feature of the problem into account. It must
be observed that the system which is treated by the methods of
quantum mechanics is in fact a part of a much bigger system (even-
tually the whole world); it is interacting with this bigger system;
and one must add that the microscopic properties of the bigger
system are (at least to a large extent) unknown. This statement is
undoubtedly a correct description of the actual situation, since the
system could not be the object of measurements and of theoret-
ical investigations — it would in fact not belong to the world of
phenomena — if it had no interactions with such a bigger system
of which the observer is a part. The interaction with the bigger
system with its undefined microscopic properties then introduces a
new statistical element into the description — both the quantum-
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theoretical and the classical one — of the system under considera-
tion. In the limiting case of the large dimensions this statistical
element destroys the effects of the interference of probabilities in
such a manner that now the quantum-mechanical scheme really
approaches the classical one in the limit. Therefore, at this point
the correlation between the mathematical symbols of quantum
theory and the concepts of ordinary language is unambiguous . . . ”
Heisenberg had by 1955 a clear understanding of the cause and

the effect of decoherence, as proved by this quote. The entangle-
ment of the evaluated system’s state with it’s environment results
into loss of interference capability (the non-diagonal elements of the
density matrix disappear). But the result is not a unique classical
state. Instead “the interaction [with the environment] introduces a
new statistical element into both the quantum-theoretical and the
classical description”: Not only one, but many diagonal elements of
the density matrix are different from zero, i. e. in the example (49)
the object can be found with finite probability at many different
spots in position space, if it’s position is measured. This is a
classical probability. As the interference capability is lost, one may
assume that the object “really has” a well-defined unique location,
which the observer just does not know. For that type of probability
there are appropriate notions available in human language, while
no words can be found in ordinary language for the probability
amplitude of quantum theory, which is capable of interferences.

7 Decoherence and the “Measurement Problem”

Some people claim, that the “measurement problem of quantum
theory” could be solved by decoherence. Such claims are not
justified. To clarify this issue, we symbolize a measurement in
v.Neumann’s model as sketched in figure 2 on the facing page: First
the system S, which is to be investigated, and the measurement
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device SM are brought into contact:

|m0〉∑
j aj |qj〉

}
1. aspect−−−−−−−→

∑
j

aj |qj〉 |mj〉 (50a)

Clearly S must be open with respect to SM , because otherwise no
measurement would be possible. But SM (which possibly could be
e. g. the eyes of a human being), being a macroscopic system, will
inevitably be open versus SR (the rest of the world), because it
is impossible to shield a macroscopic object completely (or even
approximate completely) against the scattering of gas molecules
or electromagnetic radiation from the rest of the world. Therefore
the state of the measurement device and the state of the rest of
the world SR will entangle (with |r0〉 being the state of SR before
the entanglement):

|r0〉∑
j aj |qj〉 |mj〉

}
1. aspect−−−−−−−→

∑
j

aj |qj〉 |mj〉 |rj〉 (50b)

This overall state function of SW = S + SM + SR is entangled, i.e.
it can not be written as the direct product of state functions of
the partial systems. And the effective state function of the partial
system S+SM is due to decoherence no more capable of interference.
But decoherence can not replace the collapse, which didn’t yet take
place in (50b)! The human observer reads off from the display of

= + +

SW

S SM

SR

Fig. 2 : The system SW = S + SM + SR
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the measurement device some certain, unique result qk, but not a
superposition of different values qj . Thus (50b) could be accepted
as an appropriate description only in the Everett interpretation.
Without the Everett interpretation, a reduction of state∑

j

aj |qj〉 |mj〉 |rj〉
2. aspect−−−−−−−→ |qk〉 |mk〉 |rk〉 (50c)

must follow.
If one is accepting the Everett interpretation, then one does

not need a solution of a “measurement problem”, because the
observer does anyway observe just one unique measurement result
with each component of his consciousness. Also if one decides to
follow the Copenhagen interpretation, then there is no collapse-
problem, for which a solution is required, because then from the
outset all measurement devices are described by classical physics.
Decoherence then just is, what it’s name says: The interesting
fact, that the effective state vector of the system S, computed by
“tracing out” from (50b) =

∑
j aj |qj〉 |mj〉 |rj〉 the factors related to

SM and SR, is a mixture with no interference capability. But that
interesting fact does not supply a solution for the measurement
problem of the other interpretations of quantum theory, as it does
not trigger a “collapse” of the state function, i. e. it does not explain
the step from (50b) to (50c).

8 The preferred Basis

While thus the fact of decoherence of open quantum systems
does not contribute anything to the solution of the “measurement
problem” (which does exist only for some of the interpretations
of quantum theory), another long-standing mysterious issue could
be clarified due to the decoherence concept: The problem of the
“preferred basis”. The case is as follows.
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It’s not at all clear from start on, why a measurement apparatus
SM , which is used for the measurement of the observable Q of a
system S, combines with the system S according to v.Neumann’s
theory of measurement to the superposition-state

|m0〉
ψ =

∑
j aj |qj〉

}
1. aspect−−−−−−−→

∑
j

aj |qj〉 |mj〉 , (51a)

and then collapses by∑
j

aj |qj〉 |mj〉
2. aspect−−−−−−−→ |qk〉 |mk〉 (51b)

to a certain value qk. Couldn’t just as well with |q′j〉 6= |qj〉 and
with |m′j〉 6= |mj〉 an entanglement

|m0〉
ψ =

∑
j a
′
j |q′j〉

}
1. aspect−−−−−−−→

∑
j

a′j |q′j〉 |m′j〉 (52a)

happen, and then collapse by∑
j

a′j |q′j〉 |m′j〉
2. aspect−−−−−−−→ |q′k〉 |m′k〉 (52b)

to the eigenvalue q′k 6= qk of a quite different observable Q′ 6= Q?
Of course, the measurement apparatus has been constructed such,
that it measures the quantity Q, but not some different quantity
Q′. But that is a statement in the framework of classical physics. If
— following v.Neumann — the measurement device is considered
as a quantum system, then it’s state

|m〉 =
∑
j

bj |mj〉 =
∑
j

b′j |m′j〉 (53)
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can be expanded with equal right in a series with respect to the
basis functions |mj〉 (which correlate with the eigenfunctions |qj〉 of
the observable Q), or in a series with respect to the basis functions
|m′j〉 (which correlate with the eigenfunctions |q′j〉 of the observable
Q′). It is a classical property of the measurement apparatus, not
to measure just any one of the quantities Q′, Q′′, . . . compatible
with quantum theory, but reliably and stably the certain quantity
Q. How does the device acquire this classical property?
To make clear that this is not only a problem for v.Neumann’s

measurement theory, but for the Copenhagen interpretation of
quantum theory as well, we rephrase this question still more general:
How does it come, that some quantum systems constantly and
stably are displaying certain classical properties? A particular
striking example are chiral molecules. These might for example
be organic molecules, forming a tetraeder with a carbon atom in
the center, and four different ligands. We name |R〉 the state, in
which a certain chiral, and therefore optically active molecule is
rotating the polarization plane of light clockwise. Accordingly the
left-rotating state is named |L〉. The right-rotating molecule is
the mirror image of the left-rotating molecule. Therefore in the
simplifying sketch of figure 3 on the next page, the potential energy
of the left-rotating molecule, displayed as a function of some axis
in position space, is the mirror image of the potential energy of
the right-rotating molecule.
If an infinite amount of energy was required, to transform a

right-rotating molecule into a left-rotating one, and vice versa
(left sketch in figure 3), then the both potential-wells would be
completely decoupled. The Schrödinger equation of the right- resp.
left-rotating molecule then would be

H0 |R〉 = E0 |R〉 resp. H0 |L〉 = E0 |L〉 . (54)

H0 does not combine the potential-wells of the right-rotating and
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the left-rotating molecule:

〈L|H0 |R〉 = E0 〈L|R〉 = 0
〈R|H0 |L〉 = E0 〈R|L〉 = 0 (55)

But in reality, only finite energy is required, to transform a chiral
molecule into it’s enantiomer. Thus the height of the potential
barrier between the two energy wells is finite, as displayed in the
right sketch of figure 3. Therefore H0 must be completed by an
interaction term HI , and the Schrödinger equation of the chiral
molecule becomes

(H0 +HI) |ψ〉 = E |ψ〉 . (56)

|R〉 and |L〉 are not eigenstates of the parity operator P (the
parity operator inverts the three coordinate axes of position space).
Instead |R〉 and |L〉 are converted into another by the parity
transformation. The eigenfunctions of the parity operator are the
symmetric and antisymmetric combinations of |R〉 and |L〉:

EI

E E

x x

∆E
|L〉 |R〉

|s〉

|a〉

Fig. 3 : Energy eigenvalues of a chiral molecule
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P |R〉 = |L〉 P |L〉 = |R〉

P |s〉 = +1 |s〉 with |s〉 ≡
√

1
2

(
|R〉+ |L〉

)
(57a)

P |a〉 = −1 |a〉 with |a〉 ≡
√

1
2

(
|R〉 − |L〉

)
(57b)

Here the normalization

〈s|s〉 = 〈a|a〉 = 1
2

(
〈R|R〉︸ ︷︷ ︸

1

±〈R|L〉︸ ︷︷ ︸
0

±〈L|R〉︸ ︷︷ ︸
0

+ 〈L|L〉︸ ︷︷ ︸
1

)
= 1 (58)

was chosen. Due to the mirror symmetry of the potential in the
right sketch of figure 3, the parity operator and the Hamilton
operator of the chiral molecule commute.

[P,H] = [P, (H0 +HI)] = 0 (59)

Therefore the eigenfunctions ofH are identical to the eigenfunctions
(57) of the parity operator:

H |s〉 = Es |s〉 H |a〉 = Ea |a〉 (60)

The energy of the antisymmetric state is

〈a|H|a〉 = 〈a| (H0 +HI) |a〉 =

= 1
2

(
〈R|H0|R〉︸ ︷︷ ︸

E0

+ 〈L|H0|L〉︸ ︷︷ ︸
E0

−〈R|H0|L〉︸ ︷︷ ︸
0

−〈L|H0|R〉︸ ︷︷ ︸
0

+

+ 〈R|HI |R〉︸ ︷︷ ︸
EI

+ 〈L|HI |L〉︸ ︷︷ ︸
EI

−〈R|HI |L〉︸ ︷︷ ︸
∆E/2

−〈L|HI |R〉︸ ︷︷ ︸
∆E/2

)
=

= E0 + EI − 1
2∆E (61a)

For the symmetric state, by the same method the energy

〈s|H|s〉 = E0 + EI + 1
2∆E (61b)
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is found. Typically, EI is negative, while ∆E is positive. Thus we
find the energy levels as indicated in blue in figure 3.
Chiral organic molecules usually are synthesized in biological

systems by means of chiral enzymes. Therefore they are not created
in the symmetric or antisymmetric states |s〉 or |a〉, but in the
chiral states |L〉 or |R〉. We investigate by means of the Schrödinger
equation the evolution in time of a chiral molecule, whose state is
|L〉 at time t = 0:

ψ(t) = l(t) |L〉+ r(t) |R〉 , |l|2(t=0) = 1 , |r|2(t=0) = 0 (62)
∂ψ

∂t
= − i

~
Hψ

|L〉 ∂l
∂t

+ |R〉 ∂r
∂t

= − i
~

(H0 +HI)
(
l |L〉+ r |R〉

)
Multiplying these equations from left by 〈L| resp. by 〈R|, we get
the coupled equations

∂l

∂t
= − i

~

(
l E0 + l EI + r∆E/2

)
(63a)

∂r

∂t
= − i

~

(
r E0 + r EI + l∆E/2

)
. (63b)

It is easy to check by insertion, that these equations are solved —
respecting the boundary conditions (62) — by

l(t) = Cl exp{− i
~

(E0 + EI)t} cos
( t∆E

2~
)

(64a)

r(t) = Cr exp{− i
~

(E0 + EI)t} sin
( t∆E

2~
)

(64b)

Cr = iCl , |Cl|2 = |Cr|2 = 1 .

|l|2 resp. |r|2 is the probability to observe the molecule in the
left-rotating resp. right-rotating configuration. This probability is
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oscillating with the frequency

∆E
~

= 2 〈R|HI |L〉
~

≈ 1µeV
~
≈ 1GHz = 1

1 ns . (65)

As ∆E typically is of order 1µeV, the right- and left-rotating forms
of chiral molecules should typically be stable for not much longer
than about 1 ns. If this was true, then it would be an exceedingly
formidable experimental objective, to demonstrate optical activity
at all. As is well-known, this is not true. Actually, chiral molecules,
except for the very smallest, are stable in the right- or left-rotating
form, and do not change this form in months and years. Why don’t
they? What is wrong with our computation?
The wrong result is caused by the fact, that we considered the

chiral molecule as a closed system, and ignored any interactions
with the environment. But the sugar molecules, whose optical
activity is measured in the beginners practical training, are solved in
water. Thus the sugar molecules are permanently interacting with
the water molecules in their neighborhood. Due to entanglement
with the environment, the pure state function ψ(t) = (62) of the
chiral molecule is replaced by a mixture. The Hamilton-operator’s
expectation value for this mixture can easily be computed, as the
molecule’s Hilbert space is spanned (as far as optical activity is
concerned) by two vectors only, i. e. |L〉 and |R〉:

〈H〉ρ =(41) Tr{ρH} = 〈L|ρH|L〉+ 〈R|ρH|R〉
= 〈L|ρ|L〉〈L|H|L〉+ 〈L|ρ|R〉〈R|H|L〉+

+ 〈R|ρ|L〉〈L|H|R〉+ 〈R|ρ|R〉〈R|H|R〉
= ρllHll + ρlrHrl + ρrlHlr + ρrrHrr

=(61) (ρll + ρrr︸ ︷︷ ︸
= Tr{ρ} =1

)(E0 + EW ) + (ρlr + ρrl︸ ︷︷ ︸
≈ 0

) ∆E
2 (66)
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In (75) we will prove, that the trace of any density operator is 1.
And we know that the non-diagonal elements of the density matrix
will decohere, i. e. they tend towards zero. Thus, if the molecule’s
state is entangled with the environment, it’s energy becomes

〈H〉ρ ≈ E0 + EW . (67a)

This should be compared with the energy of the closed system:

〈H〉ψ
(61)= E0 + EW ± 1

2∆E if ψ= |s〉 or ψ= |a〉 (67b)

Obviously, entanglement with the environment results into

∆E entanglement with the environment−−−−−−−−−−−−−−−−−−−−−−−→ 0 . (68)

∆E ≈ 0 does mean according to (64), that the molecule, once it’s
configuration is left- resp. right-rotating at t = 0, will keep that
configuration forever, or at least for very long time. This is caused
by the fact, that decoherence is completed within much shorter
time than the 1ns, after which an isolated molecule would typically
switch to the enantiomer configuration according to estimation (65).
In table 1 on page 25, the rate of decoherence of an object of size
10 nm due to scattering of air molecules is indicated as 1016nm−2s−1.
While we should think of objects typically 10× smaller than the
assumed 10nm, when considering how the structure of a chiral
molecule can be fixed, this factor probably is more than balanced by
the much higher density of scattering water molecules as compared
to the density of scattering air molecules.
The structure of other, non-chiral molecules is stabilized due

to decoherence as well. And also larger aggregates of molecules
(that is to say solids) get their geometrical stability thanks to
entanglement with their environment. Due to entanglement, a
measurement apparatus, once it has been constructed appropriately
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for the measurement of an observable Q, will preserve this structure
durably, and will not suddenly mutate into an apparatus for the
measurement of some different observables Q′, Q′′, . . .

This effect is completely contrary to intuition! We are disposed to
expect, that a molecule or a solid, whose exact form shall durably
be preserved, should be shielded as perfect as possible against
any “disturbance” from the environment. But the exact opposite
is true: Just the permanent, uncontrolled interactions with the
environment guarantee the geometrical constancy of the object.
Large molecules, and the more so macroscopic solids, are stabilized
in eigenstates of the position operator, because these states are
less robust against entanglement with the environment than the
eigenstates of the parity-operator and the Hamilton-operator.
From this point of view, it is sometimes correctly stated, that

decoherence can explain the “appearance of the classical world out
of the quantum world”. In a startling — though comprehensible —
manner, diffusely wafting clouds of quantum mist are transformed
into dimensionally stable, classical objects due to entanglement
with their environment.

9 Further Properties of the Density Operator

Density operators and projectors have many properties in common.
Because of (

|a〉〈b|
)+

=
(
〈b|
)+(
|a〉
)+

= |b〉〈a| , (69)

a density operator is hermitean, same as any projector, because it
equals it’s transposed complex-conjugate. Therefore all eigenvalues
of projectors and of density operators are real. A projector has
only one eigenfunction, namely the state vector, onto which it is
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projecting. The eigenvalue of this eigenfunction is 1:

Pψ|ψ〉 = |ψ〉 〈ψ|ψ〉︸ ︷︷ ︸
1

= 1 |ψ〉 (70)

Any vector |s〉 of any basis is an eigenfunction of the density
operator with eigenvalue ws:

ρ|s〉 =
∑
s′

ws′ |s′〉 〈s′|s〉︸ ︷︷ ︸
δss′

= ws|s〉 (71)

The expectation value of a projector is ≥ 0 in any state. This is
called “non-negative definite”:

〈φ|Pψ|φ〉 = 〈φ|ψ〉〈ψ|φ〉 = |〈ψ|φ〉|2 ≥ 0 (72)

The same holds for the density operator:

〈φ|ρ|φ〉 =
∑
s

ws 〈φ|s〉〈s|φ〉 =
∑
s

ws |〈s|φ〉|2 ≥ 0 (73)

A projector’s trace is

Tr{Pψ} = Tr
{
|ψ〉〈ψ|

} (14)= 〈ψ|ψ〉 = 1 . (74)

We will demonstrate in two steps, that the same is true for the
density operator.

Tr{ρ} =
∑
s

ws Tr
{
|s〉〈s|

} (14)=
∑
s

ws 〈s|s〉 =
∑
s

ws (75a)

Now we assume, that the vector |ψW 〉 is normalized to 1. Therefore

1 = 〈ψW |ψW 〉
(30)=

∑
s

∑
r

c∗WrscWrs
(35)=

∑
s

ws . (75b)
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If one of the coefficients ws is 1, then ρ degenerates to a projector

wk = 1 (75b)⇐⇒ ws = 0 ∀s 6= k , (76)

because then ρ is idempotent. This is the defining property of a
projector:

ρ ρ = |k〉 〈k|k〉︸ ︷︷ ︸
1

〈k| = |k〉〈k| = ρ (77)

But if at least two coefficients ws are different from zero, then
ws < 1 for all ws. In this case, the density operator isn’t a
projector, because it is not idempotent:

ρ ρ =
∑
s

∑
s′

wsws′ |s〉 〈s|s′〉︸ ︷︷ ︸
δss′

〈s′| =
∑
s

w2
s︸︷︷︸

<ws

|s〉〈s| 6= ρ (78)

If the density operator’s eigenfunctions |s〉 are time-dependent,
then it’s partial derivative with respect to time is

∂ρ

∂t
=
∑
s

ws
(∂|s〉
∂t
〈s|+ |s〉 ∂〈s|

∂t

)
. (79)

The Schrödinger equation and it’s adjoint equation are

i~
∂|s〉
∂t

= H|s〉 −i~ ∂〈s|
∂t

= 〈s|H . (80)

From this follows
∂ρ

∂t
=
∑
s

ws
i

~

(
−
(
H|s〉

)
〈s|+ |s〉

(
〈s|H

))
∂ρ

∂t
=
∑
s

ws
i

~

(
−H|s〉〈s|+ |s〉H〈s|+

+ |s〉〈s|H − |s〉H〈s|
)

= − i
~
[
H, ρ

]
, (81)
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resp. in case of a projector

∂Pψ
∂t

= − i
~
[
H,Pψ

]
. (82)

This should be compared to the time-derivative of an operator Q
in the Heisenberg-picture:

dQ(t)
dt = + i

~
[
H,Q

]
+ ∂Q(t)

∂t
. (83)

The last term is zero, if the observable Q(t) depends on time only
canonically, but not explicitly. Obviously

dρ
dt = dPψ

dt = 0 (84)

for density operators and for projectors, as the canonical time-
dependencies and the explicit time dependencies of these operators
mutually cancel.

Even though they are hermitean operators, projectors and density
operators are no observables: There exists no measurement device,
which displays as result of a measurement the eigenvalue 1 of a
projector or the eigenvalue wk of a density operator, and prepares
at the same time the system S in the eigenstate |ψ〉 of the projector
resp. in the eigenstate |k〉 of the density operator.
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